Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Low-rank methods for on-the-fly slicing & dicing of seismic data and image volumes

Rajiv Kumar

Wednesday, October 26, 2016

Massive seismic data volumes of the orders of petabytes

Expensive to store and use in processing

Devise compression techniques to mitigate data handling

Work with compressed data in inversion without forming the full seismic volume

Compression rate (4D seismic volumes) Monochromatic slice - 396 x 396 x 50 x 50

Compression rate (4D seismic volumes) Monochromatic slice - 396 x 396 x 50 x 50

Compressed seismic volume for 3D FWI

Rajiv Kumar, Curt Da Silva, Yiming Zhang and Felix J. Herrmann

Problem formulation

Our problem:

$$\min_{m} \sum_{k,l} \|P_k H_{k,l}^{-1}(m)\| \le 1$$

Where:

$H_{k,l}(m) \in \mathbb{C}^{N \times N}$	Helmolt
$m \in \mathbb{R}^N$	Mediun
$P_k \in \mathbb{R}^{n \times N}$	Receive
$q_{k,l} \in \mathbb{R}^N$	Source
$d_{k,l} \in \mathbb{C}^n$	Observe

$(n)q_{k,l} - d_{k,l}\|_2^2$

tz operator at the kth shot of lth frequency

m parameters

er projection operator at the kth shot

at the kth shot of lth frequency

red data at the kth shot of lth frequency

Challenges for Full Waveform Inversion

Less than ideal acquisition • missing data

Computationally intensive • # of source experiments

High storage costs for data • curse of dimensionality

Low rank seismic data

Seismic data is *redundant*measuring the same Earth, with slightly different measurements

We can exploit *low rank tensor* structure for data compression Hierarchical Tucker format

Hierarchical Tucker format $X - n_1 \times n_2 \times n_3 \times n_4$ tensor

$$\begin{bmatrix} B_{1234} & k_{34} & U_{34}^T \\ & & & \\ & &$$

"SVD"-like decomposition

 k_{12}

HT Compression

 $A 100 \times 100 \times 100 \times 100$ cube with max rank 20

Full storage: $100^4 = 10^8$ parameters

HT storage: 24400 values

Compression of a factor of 99.97%

C. Da Silva, F. Herrmann "Optimization on the Hierarchical Tucker manifold - applications to tensor completion", 2015

Seismic HT Tensor

For a frequency slice with coordinates (rec x, rec y src x, src y), we can introduce the following dimension tree

Compressed Data

We can compress low frequency seismic data in HT format full data -> truncation

missing data -> interpolation

In either case, we don't have to store the full volume during FWI

Memory usage - 396 x 396 x 50 x 50 volume ~ 5.8 GB

Frequency	HT Parameter Size	SNR	Compression Ratio
3 Hz	48 MB	40.95	99.2%
6 Hz	95 MB	25.76	98.4%

Compressed Data FWI

For 3D FWI with stochastic optimization • we only need *query-based* access to the data volume

Each iteration of the stochastic algorithm only requires a subset of the full sources

- compress data volume in HT
- extract shots as requested by the algorithm

Ideal scenario

Follow the tree structure

form full seismic data volumes

Extract shot / receiver gather

very expensive

$U_{recx \ srcx}$	$B_{recx\ srcx}$
	$\{recx, sr$
	U_{recx}
	$\{recx\}$

 MU_{srcx}

 MU_{srcy}

$$M \in \mathbf{R}^{1 \times n_1}$$
$$[0, 0, \dots, 1, 0, \dots]$$

 MU_{srcx}

 MU_{srcy}

$$M \in \mathbf{R}^{1 \times n_1}$$
$$[0, 0, \dots, 1, 0, \dots]$$


```
Slicing & dicing for data domain
          Only need HT parameters and src index
function gather = gathers_extr(dimTree, , index, mode)
% Extracts any common shot gathers or receiver gathers from HT parameters
% Usage:
   gather=gather_extr(dimTree,x,index,mode);
% Input:
          _
              vectorized HT parameters
   X
               generate U ( HT leaf bases) and B (HT interior nodes)
   dimTree -
               the index you want to extract from src or rec location
   index -
%
               1 :common shot gathers
          -
   mode
                  :common receiver gathers
               2
% Output:
   gather -
               the common shot gather or receiver gather
```


Slicing & dicing for data domain

Overthrust model

- 20 km x 20 km x 4.6 km 50 m spacing, 500m water layer
- 50 x 50 sources, 200m spacing 2500 shots
- 401 x 401 receivers, 50m spacing
- 3Hz 5Hz frequency range, single freq. inverted at a time
- compression rate of 99.7%

Stochastic algorithm with three full passes through the data

We compare stochastic FWI with

- full data
- compressed data

Exactly the same source indices chosen by the algorithm in all three trials

z=1000m slice

Initial model

z=1000m slice

z=1000m slice

Compressed data

x=12.5km slice

x=12.5km slice

x=12.5km slice

Compressed data

Data Compressed FWI

We can still work with compressed data in a 3D FWI workflow

- reduced memory costs
- comparable results

Trickier for higher frequencies, but still workable

2D & 3D Image volumes

Rajiv Kumar, Curt Da Silva, Yiming Zhang and Felix J. Herrmann

SLM University of British Columbia

Motivation

Form subsurface offset image volumes

Velocity analysis

Targeted imaging

Motivation

(storage & computation time)

Past

Can **not** form full *E* **but** *action* on (random) vectors allows us to get information from all or subsets of subsurface points

Computation of full-subsurface offset volumes is prohibitively expensive in 3D

Motivation

(storage & computation time)

Present

Can **not** form full *E* using *action* on (random) vectors allows us to get information from all or subsets of subsurface points

Efficient ways to extract information from highly compressed image volumes

Game changer for 3D WEMVA

Computation of full-subsurface offset volumes is prohibitively expensive in 3D

Extended images

Given two-way wave equations, source and receiver wavefields are defined as $H(\mathbf{m})U = P_s^T Q$ $H(\mathbf{m})^*V = P_r^T D$

where

- - Q:source
 - D:data matrix
- - slowness **m** :

 $H(\mathbf{m})$: discretization of the Helmoltz operator

 P_s, P_r : samples the wavefield at the source and receiver positions

Extended images

represents a common shot gather

Express image volume tensor for single frequency as a matrix

Organize wavefields in monochromatic data *matrices* where each column

 $E = UV^*$

Extended images

sources

gridpoints

In 3D, E is 6D tensor for each monochromatic slice

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, "Enabling affordable omnidirectional subsurface extended image volumes via probing", Geophysical Prospecting, 2016

Extended images (Past)

Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix $W = [\mathbf{w}_1, \ldots, \mathbf{w}_l]$

$$\widetilde{E} = EW = H^{-1}P_s^T$$

where $\mathbf{w}_i = [0, \dots, 0, 1, 0, \dots, 0]$ represents single scattering points

- $^T_{s}QD^*P_rH^{-1}W$

Source / Receiver location

Extended images common image point gather, 3- 30 Hz

$\Delta \mathbf{x}$: Horizontal offset

 Δz : Vertical offset

Halko et. al, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2010

Slicing & Dicing of image volumes

$egin{aligned} Y &= E(m)W\ [Q,R] &= \operatorname{qr}(Y)\ Z &= Q^H E(m)\ [U,S,V] &= \operatorname{svd}(Z)\ U \leftarrow QU \end{aligned}$

- Probe full-extended image volume with virtual source
 - **QR** factorization
 - **Probe again with new virtual source**
 - **SVD** factorization (first few singular values) *
 - **Compute right singular vectors**

Low-rank representation 5Hz

60 x 20 l (ш₃₀₀ х x (m)

Low-rank representation 5Hz

42

Take-away message

Computational costs

Full subsurface offset extended images:

	# of PDE solves	"flops for correlations"
conventional	2Ns	$N_s \times N_h$
mat-vecs	4N _x	$N_s \times N_r$

$$N_s - #$$
 of sources
 $N_r - #$ of receivers
 $N_h - #$ of subsurface offsets
 $N_x - #$ of sample points

Take-away message

Computational costs

Full subsurface offset extended images:

	# of PDE solves	"flops for correlations"
conventional	2Ns	$N_s \times N_h$
mat-vecs	4N _x	$N_s \times N_r$

$$N_s - #$$
 of sources
 $N_r - #$ of receivers
 $N_h - #$ of subsurface offsets
 $N_x - #$ of sample points

We win when $N_x < < N_s$!

Applications

Image gather for QC

Target-imaging

Wave-equation migration velocity analysis

Image-gather

Experimental details

1200 source (75 m spacing) , 2500 receivers (50 m spacing)
5-12 Hz
OBN acquisition
peak frequency 15 Hz
200 probing vectors

3D BG Compass model

CIG

Cross section across CIG

Target-imaging

Experimental details

251 source (30 m spacing), 751 receivers (10 m spacing) 5-40 Hz split-spread acquisition recording length 6s, sampling interval 4ms peak frequency 25 Hz 100 probing vectors

Sigsbee model

target-imaging datum

Smooth model

Re-datum data

 $\delta \mathbf{x}$ (km)

Re-datum image

true reflecitivity

re-datum image

Biondo & Symes, '04, Symes 2008, Sava & Vasconcelos, '11

conventional approach

 \star stand for element-wise multiplication

.*

Η'

Focusing propose method approach

***** matrix-matrix multiplication

$E \operatorname{diag}(\mathbf{x}) \approx \operatorname{diag}(\mathbf{x}) E$

Focusing

where \mathbf{x} represents horizontal, vertical or all offset.

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, "Affordable omnidirectional subsurface extended image volumes", preprint Geophysical Prospecting

Fast WEMVA w/ randomized probing

Measure the error in some norm

$\min_{\mathbf{m}} || E(\mathbf{m}) \mathbf{d}|$ m

 $||A||_{F}^{2} =$

$$\mathsf{iag}(\mathbf{x}) - \mathsf{diag}(\mathbf{x}) E(\mathbf{m}) ||_2^2$$

The Frobenius norm can be estimated via randomized trace estimation : Avron and Toledo, 2011

$$= \operatorname{trace}(A^{T}A)$$

$$\approx \sum_{i=1}^{K} \mathbf{w}_{i}^{T} A^{T}A \mathbf{w}_{i} = \sum_{i=1}^{K} ||A \mathbf{w}_{i}||_{2}^{2}$$

Slicing & dicing

Can not store full E for large-scale 2D and 3D use factorized form

No need to re-estimate E during gradient computations

Gradients

$$egin{aligned} DE(m)[\delta m]y&=-H(m)^{-1}rac{\partial H(m)}{\partial m}[\delta m]E(m)y-E(m)rac{\partial H(m)}{\partial m}[\delta m]H(m)^{-1}y\ (DE(m)[\cdot]y)^TZ&=- ext{diag}(\overline{E(m)y})rac{\partial H(m)}{\partial m}^HH(m)^{-H}Z- ext{diag}(\overline{H(m)^{-1}y})rac{\partial H(m)}{\partial m}^HE(m)^HZ\
onumber\
abla f(m)&=(DE(m)[\cdot] ext{diag}(s)w- ext{diag}(s)DE(m)[\cdot]w)^T(E(m) ext{diag}(s)w- ext{diag}(s)E(m)w) \end{aligned}$$

Experimental details

350 source (40 m spacing), 700 receivers (20 m spacing)
5-25 Hz
split-spread acquisition
recording length 6s, sampling interval 4ms
peak frequency 20 Hz
25 LBFGS iterations
100 probing vectors

Marmousi model

Inverted model

Observation

subsurface image volumes in 3D

Efficient way to extract informations from image volumes

Very fast (2D/3D) target-imaging tool

60X reduction in memory and computational cost in 2D WEMVA, a step closer to 3D WEMVA

Conclusion

- Easy way to handle enormous data volumes
 very high compression ratios (at low-frequencies)
- Efficient data extraction framework
- Can form full-subsurface extended image volumes
- Easy to combine with existing FWI/WEMVA codes

Future work

- Combined w/ frequency-extrapolation
- 3D extension (WEMVA, Target-Imaging etc...)
- Least-square extended image volumes
- Links to time-domain framework

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research & Development.

Thank you for your attention

