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Motivation

2

Massive seismic data volumes of the orders of 
petabytes

Expensive to store and use in processing

Devise compression techniques to mitigate data 
handling

Work with compressed data in inversion without 
forming the full seismic volume
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Compression rate (4D seismic volumes)
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Monochromatic slice - 396 x 396 x 50 x 50
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Compression rate (4D seismic volumes)
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SNR	36	dB
99.5	%	compression

24	dB	SNR	
99.2	%	compression

Monochromatic slice - 396 x 396 x 50 x 50
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Problem formulation
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Our	problem:
min
m

X

k,l

kPkH
�1
k,l (m)qk,l � dk,lk22

Where:
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Challenges for Full Waveform Inversion

Less	than	ideal	acquisition
• missing	data

Computationally	intensive
• #	of	source	experiments

High	storage	costs	for	data
• curse	of	dimensionality
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Low rank seismic data

Seismic	data	is	redundant
• measuring	the	same	Earth,	with	slightly	different	measurements

We	can	exploit	low	rank	tensor	structure	for	data	compression
• Hierarchical	Tucker	format

7
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Hierarchical Tucker format

“SVD”-like decomposition

X � n1 ⇥ n2 ⇥ n3 ⇥ n4 tensor
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Hierarchical Tucker format
X � n1 ⇥ n2 ⇥ n3 ⇥ n4 tensor
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Hierarchical Tucker format
X � n1 ⇥ n2 ⇥ n3 ⇥ n4 tensor
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HT Compression

11

A																																																cube	with	max	rank	
	
Full	storage:																									parameters

HT	storage:															values

Compression	of	a	factor	of		99.97%

100⇥ 100⇥ 100⇥ 100 20

1004 = 108

24400
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For	a	frequency	slice	with	coordinates	(rec	x,	rec	y	src	x,	src	y),	we	can	introduce	the	
following	dimension	tree

Seismic HT Tensor

12

{recx, srcx, recy, srcy}
B

recx srcx recy srcy

B
recx srcx

U
recx srcx

Urecy srcy Brecy srcy

UrecyU
recx

U
srcx

Usrcy

{recx} {srcx} {srcy}{recy}

{recx, srcx} {recy, srcy}

C.	Da	Silva,	F.	Herrmann	“Optimization	on	the	Hierarchical	Tucker	manifold	-	applications	to	tensor	completion”,	2015
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Compressed Data

13

We	can	compress	low	frequency	seismic	data	in	HT	format
• full	data	->	truncation

• missing	data	->	interpolation

In	either	case,	we	don’t	have	to	store	the	full	volume	during	FWI
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Memory usage - 396 x 396 x 50 x 50 volume ~ 5.8 GB

14

Frequency HT Parameter Size SNR Compression Ratio

3 Hz 48 MB 40.95 99.2%

6 Hz 95 MB 25.76 98.4%
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Compressed Data FWI

15

For	3D	FWI	with	stochastic	optimization	
• we	only	need	query-based	access	to	the	data	volume

Each	iteration	of	the	stochastic	algorithm	only	requires	a	subset	of	
the	full	sources

• compress	data	volume	in	HT
• extract	shots	as	requested	by	the	algorithm
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Ideal scenario

Follow the tree 
structure

form full seismic 
data volumes

Extract shot / 
receiver gather

very expensive

{recx, srcx, recy, srcy}
B

recx srcx recy srcy

B
recx srcx

U
recx srcx

Urecy srcy Brecy srcy

UrecyU
recx

U
srcx

Usrcy

{recx} {srcx} {srcy}{recy}

{recx, srcx} {recy, srcy}
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U
recx srcx

Urecy srcy

{recx, srcx} {recy, srcy}

{recx, srcx, recy, srcy}
B

recx srcx recy srcy

B
recx srcx

Brecy srcy

UrecyU
recx

{recx}
U
srcx

Usrcy

{srcx} {srcy}{recy}

Efficient trick to extract gathers
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Slicing & dicing for data domain

18

Only	need	HT	parameters	and	src	index	

Receiver x
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Slicing & dicing for data domain
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3D	FWI	Example
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3D FWI Example

Overthrust	model
• 20	km	x	20	km	x	4.6	km	-	50	m	spacing,	500m	water	layer

• 50	x	50	sources,	200m	spacing	-	2500	shots

• 401	x	401	receivers,	50m	spacing

• 3Hz	-	5Hz	frequency	range,	single	freq.	inverted	at	a	time

• compression	rate	of	99.7%
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3D FWI Example

Stochastic	algorithm	with	three	full	passes	through	the	data

22
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3D FWI Example

We	compare	stochastic	FWI	with
• full	data
• compressed	data

Exactly	the	same	source	indices	chosen	by	the	algorithm	in	all	
three	trials

23
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z=1000m slice

24

Initial	modelTrue	model
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z=1000m slice
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Full	dataTrue	model
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z=1000m slice
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Compressed	dataTrue	model
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x=12.5km slice
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Initial	modelTrue	model
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x=12.5km slice
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Full	dataTrue	model
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x=12.5km slice
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Compressed	dataTrue	model
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Data Compressed FWI

30

We	can	still	work	with	compressed	data	in	a	3D	FWI	workflow	
• reduced	memory	costs
• comparable	results

Trickier	for	higher	frequencies,	but	still	workable
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2D & 3D Image volumes
Rajiv	Kumar,	Curt	Da	Silva,	Yiming	Zhang	and	Felix	J.	Herrmann
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Form subsurface offset image volumes 

Velocity analysis

Targeted imaging

Motivation
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Computation of full-subsurface offset volumes is prohibitively expensive in 3D
(storage & computation time)

Can not form full E but action on (random) vectors allows us to get 
information from all or subsets of subsurface points

Motivation

Past
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Computation of full-subsurface offset volumes is prohibitively expensive in 3D
(storage & computation time)

Can not form full E using action on (random) vectors allows us to get 
information from all or subsets of subsurface points

Efficient ways to extract information from highly compressed image volumes

Game changer for 3D WEMVA

Motivation

Present
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Given two-way wave equations, source and receiver wavefields are defined 
as

where
                                                        discretization of the Helmoltz operator  

                                                source

                                                         data matrix

                                              samples the wavefield at the source and receiver positions 

                                                         slowness

                                                        

Extended images

H(m)U = PT
s Q

H(m)⇤V = PT
r D

H(m) :

Q :

D :

Ps, Pr :

m :
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Extended images
Organize wavefields in monochromatic data matrices where each column 
represents a common shot gather

Express image volume tensor for single frequency as a matrix

E = UV ⇤
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Extended images

gr
id

po
in

ts
sources

4D image volume
 as matrix

nx	x	nz

In 3D, E is 6D tensor for each 
monochromatic slice
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Extended images (Past)
Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix       

where                                     represents single scattering points

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, “Enabling affordable omnidirectional subsurface extended image volumes via probing”, 
Geophysical Prospecting, 2016

eE = EW = H�1PT
s QD⇤PrH

�1W

W = [w1, . . . ,wl]

wi = [0, . . . , 0, 1, 0, . . . , 0]
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Extended images
Marmousi model
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Slicing & Dicing of image volumes

Halko et. al, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, 2010

Probe full-extended image volume with virtual source

QR factorization

Probe again with new virtual source

SVD factorization (first few singular values) *

Compute right singular vectors
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Low-rank representation
5Hz
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Low-rank representation
5Hz
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Computational costs
Full subsurface offset extended images:

# of PDE solves “flops for 
correlations”

conventional 2Ns Ns x Nh

mat-vecs 4Nx Ns x Nr

Ns  – # of sources   
Nr  – # of receivers
Nh – # of subsurface offsets
Nx  – # of sample points

Take-away message
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Full subsurface offset extended images:

                                                                 We win when Nx < < Ns !

Computational costs

# of PDE solves “flops for 
correlations”

conventional 2Ns Ns x Nh

mat-vecs 4Nx Ns x Nr

Ns  – # of sources   
Nr  – # of receivers
Nh – # of subsurface offsets
Nx  – # of sample points

Take-away message
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Applications

Image	gather	for	QC

Target-imaging

Wave-equation	migration	velocity	analysis
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Image-gather
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1200 source (75 m spacing) , 2500 receivers (50 m spacing)

5-12 Hz

OBN acquisition

peak frequency 15 Hz

200 probing vectors

Experimental details
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3D BG Compass model

48
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CIG
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50

Cross section across CIG
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Target-imaging
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251 source (30 m spacing) , 751 receivers (10 m spacing)

5-40 Hz

split-spread acquisition

recording length 6s, sampling interval 4ms

peak frequency 25 Hz

100 probing vectors

Experimental details
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Sigsbee model

True	model Smooth	model

target-imaging	datum

Wednesday, October 26, 2016



54

Re-datum data
monochromatic	slice f-x	domain	

t-x	domain	
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Re-datum image

re-datum	imagetrue	reflecitivity

Wednesday, October 26, 2016



56

WEMVA
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WEMVA
conventional approach
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 Biondo & Symes, ’04 , Symes 2008, Sava & Vasconcelos, ’11
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⇤matrix-matrix multiplication

Focusing
propose method approach

Ediag(x) ⇡ diag(x)E
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Focusing
where     represents horizontal, vertical or all offset.x

horizontal 
offset

horizontal
+vertical 

offset

all 
offsets
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Fast WEMVA w/ randomized probing
Measure the error in some norm    

The Frobenius norm can be estimated via randomized trace estimation :                       

where

Avron and Toledo, 2011

||A||2F = trace(ATA)

KX

i=1

wiw
T
i ⇡ I

⇡
KX

i=1

wT
i A

TAwi =
KX

i=1

||Awi||22

min
m

||E(m)diag(x)� diag(x)E(m)||2?

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, “Affordable omnidirectional subsurface extended image volumes”, preprint Geophysical Prospecting
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Slicing & dicing

Can not store full E for large-scale 2D and 3D

use factorized form

No need to re-estimate E during gradient computations

Gradients
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350 source (40 m spacing) , 700 receivers (20 m spacing)

5-25 Hz 

split-spread acquisition

recording length 6s, sampling interval 4ms

peak frequency 20 Hz

25 LBFGS iterations

100 probing vectors

Experimental details
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Marmousi model

True	model Starting	model Inverted	model
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100X computational and memory savings while forming the full-
subsurface image volumes in 3D

      

Efficient way to extract informations from image volumes

Very fast (2D/3D) target-imaging tool 

60X reduction in memory and computational cost in 2D WEMVA,

a step closer to 3D WEMVA

Observation
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Conclusion
• Easy	way	to	handle	enormous	data	volumes

• very	high	compression	ratios	(at	low-frequencies)

• Efficient	data	extraction	framework

• Can	form	full-subsurface	extended	image	volumes

• Easy	to	combine	with	existing	FWI/WEMVA	codes
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Future work
• Combined	w/	frequency-extrapolation	

• 3D	extension	(WEMVA,	Target-Imaging	etc...)

• Least-square	extended	image	volumes

• Links	to	time-domain	framework
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