Rajiv Kumar

University of British Columbia
Rajiv Kumar
SLIM $\frac{1}{\text { University of British Columbia }}$

Wednesday，October 26， 2016
－
\qquad

 （ － SLIM 1 University of B
\qquad
 \section*{Low－rank methods for on－the－fly slicing \＆dicing of
 \section*{Low－rank methods for on－the－fly slicing \＆dicing of seismic data and image volumes} seismic data and image volumes}
\qquad
都
都

\qquad

ods for on－the－fly image volumes

a
\square
\square
－
\square
\square － \square
\square
\square \checkmark $-$
 －
$=$
\qquad
\qquad ，
\square

\qquad
\qquad

Motivation

Massive seismic data volumes of the orders of petabytes

Expensive to store and use in processing

Devise compression techniques to mitigate data handling

Work with compressed data in inversion without forming the full seismic volume

Compression rate (4D seismic volumes)

Monochromatic slice $-396 \times 396 \times 50 \times 50$

Compression rate (4D seismic volumes)

Monochromatic slice $-396 \times 396 \times 50 \times 50$

Compressed seismic volume for 3D FWI

Rajiv Kumar, Curt Da Silva, Yiming Zhang and Felix J. Herrmann

SLIMe
University of British Columbia

Problem formulation

Our problem:

$$
\min _{m} \sum_{k, l}\left\|P_{k} H_{k, l}^{-1}(m) q_{k, l}-d_{k, l}\right\|_{2}^{2}
$$

Where:

$$
\begin{array}{ll}
H_{k, l}(m) \in \mathbb{C}^{N \times N} & \text { Helmoltz operator at the } k \text { th shot of } l \text { th frequency } \\
m \in \mathbb{R}^{N} & \text { Medium parameters } \\
P_{k} \in \mathbb{R}^{n \times N} & \text { Receiver projection operator at the } k \text { th shot } \\
q_{k, l} \in \mathbb{R}^{N} & \text { Source at the } k \text { th shot of } l \text { th frequency } \\
d_{k, l} \in \mathbb{C}^{n} & \text { Observed data at the } k \text { th shot of } l \text { th frequency }
\end{array}
$$

Challenges for Full Waveform Inversion

Less than ideal acquisition

- missing data

Computationally intensive

- \# of source experiments

High storage costs for data

- curse of dimensionality

Low rank seismic data

Seismic data is redundant

- measuring the same Earth, with slightly different measurements

We can exploit low rank tensor structure for data compression

- Hierarchical Tucker format

Hierarchical Tucker format

$$
X-n_{1} \times n_{2} \times n_{3} \times n_{4} \text { tensor }
$$

"SVD"-like decomposition

Hierarchical Tucker format

$$
X-n_{1} \times n_{2} \times n_{3} \times n_{4} \text { tensor }
$$

Hierarchical Tucker format

$$
X-n_{1} \times n_{2} \times n_{3} \times n_{4} \text { tensor }
$$

HT Compression

A $100 \times 100 \times 100 \times 100$ cube with max rank 20

Full storage: $100^{4}=10^{8}$ parameters

HT storage: 24400 values

Compression of a factor of 99.97\%

Seismic HT Tensor

For a frequency slice with coordinates (rec x, rec $y \operatorname{src} x, \operatorname{src} y$), we can introduce the following dimension tree

$$
B_{\text {recx }} \underbrace{}_{\text {srcx }} \text { recy srcy }
$$

$$
\{r e c x, \operatorname{srcx}, r e c y, s r c y\}
$$

Compressed Data

We can compress low frequency seismic data in HT format

- full data -> truncation
- missing data -> interpolation

In either case, we don't have to store the full volume during FWI

Memory usage - $396 \times 396 \times 50 \times 50$ volume ~ 5.8 GB

Frequency	HT Parameter Size	SNR	Compression Ratio
3 Hz	48 MB	40.95	
			99.2%
6 Hz	95 MB	25.76	98.4%

Compressed Data FWI

For 3D FWI with stochastic optimization

- we only need query-based access to the data volume

Each iteration of the stochastic algorithm only requires a subset of the full sources

- compress data volume in HT
- extract shots as requested by the algorithm

Ideal scenario

Follow the tree structure

very expensive

Efficient trick to extract gathers

Slicing \& dicing for data domain

Slicing \& dicing for data domain

3D FWI Example

3D FWI Example

Overthrust model

- $20 \mathrm{~km} \times 20 \mathrm{~km} \times 4.6 \mathrm{~km}-50 \mathrm{~m}$ spacing, 500 m water layer
- 50×50 sources, 200 m spacing - 2500 shots
- 401×401 receivers, 50m spacing
- $3 \mathrm{~Hz}-5 \mathrm{~Hz}$ frequency range, single freq. inverted at a time
- compression rate of 99.7\%

3D FWI Example

Stochastic algorithm with three full passes through the data

3D FWI Example

We compare stochastic FWI with

- full data
- compressed data

Exactly the same source indices chosen by the algorithm in all three trials

$z=1000 \mathrm{~m}$ slice

True model

Initial model

$z=1000 \mathrm{~m}$ slice

True model

Full data

$z=1000 \mathrm{~m}$ slice

True model

Compressed data

$\mathrm{x}=12.5 \mathrm{~km}$ slice

True model

Initial model

$\mathrm{x}=12.5 \mathrm{~km}$ slice

True model

Full data

$\mathrm{x}=12.5 \mathrm{~km}$ slice

True model

Compressed data

Data Compressed FWI

We can still work with compressed data in a 3D FWI workflow

- reduced memory costs
- comparable results

Trickier for higher frequencies, but still workable

2D \& 3D Image volumes

Rajiv Kumar, Curt Da Silva, Yiming Zhang and Felix J. Herrmann

SLIM \odot
University of British Columbia

Motivation

Form subsurface offset image volumes

Velocity analysis

Targeted imaging

Motivation

Computation of full-subsurface offset volumes is prohibitively expensive in 3D (storage \& computation time)

Past

Can not form full E but action on (random) vectors allows us to get information from all or subsets of subsurface points

Motivation

Computation of full-subsurface offset volumes is prohibitively expensive in 3D (storage \& computation time)

Present

Can form full E using action on (random) vectors allows us to get information from all or subsets of subsurface points

Efficient ways to extract information from highly compressed image volumes

Game changer for 3D WEMVA

Extended images

Given two-way wave equations, source and receiver wavefields are defined as

$$
\begin{aligned}
& H(\mathbf{m}) U=P_{s}^{T} Q \\
& H(\mathbf{m})^{*} V=P_{r}^{T} D
\end{aligned}
$$

where
$H(\mathbf{m})$: discretization of the Helmoltz operator
Q : source
D : data matrix
P_{s}, P_{r} : samples the wavefield at the source and receiver positions m : slowness

Extended images

Organize wavefields in monochromatic data matrices where each column represents a common shot gather

Express image volume tensor for single frequency as a matrix

$$
E=U V^{*}
$$

Extended images

sources

In 3D, E is 6D tensor for each monochromatic slice

Extended images (Past)

Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right]$

$$
\widetilde{E}=E W=H^{-1} P_{s}^{T} Q D^{*} P_{r} H^{-1} W
$$

where $\mathbf{w}_{i}=[0, \ldots, 0,1,0, \ldots, 0]$ represents single scattering points

Extended images
Marmousi model

Extended images

common image point gather, $3=30 \mathrm{~Hz}$

$\Delta \mathrm{x}$: Horizontal offset
$\Delta z: V e r t i c a l$ offset

$$
\begin{aligned}
Y & =E(m) W & & \text { Probe full-extended image volume with virtual source } \\
{[Q, R] } & =\operatorname{qr}(Y) & & \text { eR factorization } \\
Z & =Q^{H} E(m) & & \text { Probe again with new virtual source } \\
{[U, S, V] } & =\operatorname{svd}(Z) & & \text { svD factorization (first few singular values) * } \\
U & \leftarrow Q U & & \text { compute right singular vectors }
\end{aligned}
$$

Slicing \& Dicing of image volumes

Low-rank representation 5Hz

60×201

Full E

Low-rank representation 5Hz

Full E

Take-away message

Computational costs

Full subsurface offset extended images:

	\# of PDE solves	"flops for correlations"
conventional	$2 \mathrm{~N}_{\mathrm{s}}$	$\mathrm{N}_{\mathrm{s}} \times \mathrm{N}_{\mathrm{h}}$
mat-vecs	$4 \mathrm{~N}_{\mathrm{x}}$	$\mathrm{N}_{\mathrm{s}} \times \mathrm{N}_{\mathrm{r}}$

N_{s} - \# of sources
N_{r} - \# of receivers
N_{h} - \# of subsurface offsets
N_{x} - \# of sample points

Take-away message

Computational costs

Full subsurface offset extended images:

	\# of PDE solves	"flops for correlations"
conventional	$2 \mathrm{~N}_{\mathrm{s}}$	$\mathrm{N}_{\mathrm{s}} \times \mathrm{N}_{\mathrm{h}}$
mat-vecs	$4 \mathrm{~N}_{\mathrm{x}}$	$\mathrm{N}_{\mathrm{s}} \times \mathrm{N}_{\mathrm{r}}$

N_{s} - \# of sources
We win when $\mathbf{N}_{\mathbf{x}} \ll \mathbf{N}_{\mathbf{s}}$!
N_{r} - \# of receivers
N_{h} - \# of subsurface offsets
N_{x} - \# of sample points

Applications

Image gather for QC

Target-imaging

Wave-equation migration velocity analysis

Image-gather

Experimental details

1200 source (75 m spacing) , 2500 receivers (50 m spacing)
$5-12 \mathrm{~Hz}$
OBN acquisition
peak frequency 15 Hz
200 probing vectors

3D BG Compass model

CIG

Cross section across CIG

Target-imaging

Experimental details

25 I source (30 m spacing), 75 I receivers (10 m spacing)
$5-40 \mathrm{~Hz}$
split-spread acquisition
recording length 6 s , sampling interval 4 ms
peak frequency 25 Hz
100 probing vectors

Sigsbee model

True model

Smooth model

Re-datum data

Re-datum image

WEMVA

conventional approach

Focusing

propose method approach

$E \operatorname{diag}(\mathbf{x}) \approx \operatorname{diag}(\mathbf{x}) E$

* matrix-matrix multiplication

Focusing

where \mathbf{x} represents horizontal, vertical or all offset.

Fast WEMVA w/ randomized probing

Measure the error in some norm

$$
\min _{\mathbf{m}}\|E(\mathbf{m}) \operatorname{diag}(\mathbf{x})-\operatorname{diag}(\mathbf{x}) E(\mathbf{m})\|_{?}^{2}
$$

The Frobenius norm can be estimated via randomized trace estimation : Avron and Toledo, 2011

$$
\begin{aligned}
\|A\|_{F}^{2} & =\operatorname{trace}\left(A^{T} A\right) \\
& \approx \sum_{i=1}^{K} \mathbf{w}_{i}^{T} A^{T} A \mathbf{w}_{i}=\sum_{i=1}^{K}\left\|A \mathbf{w}_{i}\right\|_{2}^{2}
\end{aligned}
$$

where $\sum_{i=1}^{K} \mathbf{w}_{i} \mathbf{w}_{i}^{T} \approx I$

Slicing \& dicing

Can not store full E for large-scale 2D and 3D use factorized form

No need to re-estimate E during gradient computations

Gradients

$$
\begin{aligned}
D E(m)[\delta m] y & =-H(m)^{-1} \frac{\partial H(m)}{\partial m}[\delta m] E(m) y-E(m) \frac{\partial H(m)}{\partial m}[\delta m] H(m)^{-1} y \\
(D E(m)[\cdot] y)^{T} Z & =-\operatorname{diag}(\overline{E(m) y}) \frac{\partial H(m)^{H}}{\partial m}{ }^{H} H(m)^{-H} Z-\operatorname{diag}\left(\overline{H(m)^{-1} y}\right) \frac{\partial H(m)^{H}}{\partial m} E(m)^{H} Z \\
\nabla f(m) & =(D E(m)[\cdot] \operatorname{diag}(s) w-\operatorname{diag}(s) D E(m)[\cdot] w)^{T}(E(m) \operatorname{diag}(s) w-\operatorname{diag}(s) E(m) w)
\end{aligned}
$$

Experimental details

350 source (40 m spacing) , 700 receivers (20 m spacing)
$5-25 \mathrm{~Hz}$
split-spread acquisition
recording length 6 s , sampling interval 4 ms
peak frequency 20 Hz
25 LBFGS iterations
100 probing vectors

Marmousi model

True model

Starting model

Inverted model

Observation

I OOX computational and memory savings while forming the fullsubsurface image volumes in 3D

Efficient way to extract informations from image volumes

Very fast (2D/3D) target-imaging tool

60X reduction in memory and computational cost in 2D WEMVA, a step closer to 3D WEMVA

Conclusion

- Easy way to handle enormous data volumes
- very high compression ratios (at low-frequencies)
- Efficient data extraction framework
- Can form full-subsurface extended image volumes
- Easy to combine with existing FWI/WEMVA codes

Future work

- Combined w/ frequency-extrapolation
- 3D extension (WEMVA, Target-Imaging etc...)
- Least-square extended image volumes
- Links to time-domain framework

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research \& Development.

Thank you for your attention

