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Motivation

Full-waveform	inversion	(FWI):

‣ hampered	by	poor	data	&	parasitic	local	minima

‣ ill-posed	<=>	missing	frequencies	&	finite	aperture

‣ should	benefit	from	bounds	&	structure-promoting	priors	(TV-	or					-norms	)

Efforts	met	w/	limited	success:

‣ unpredictable	dependence	on	(unnecessary)	hyper	parameters

‣ poor	conditioning	of	structure	promoting	regularization	

‣ difficulties	handling	multiple	pieces	of	prior	information

`1

Anagaw, A. Y., and Sacchi, M. D., 2011, Full waveform inversion with total variation regularization
Epanomeritakis, I., Akçelik, V., Ghattas, O., and Bielak, J., 2008, A newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion: 
Inverse Problems, 24, 034015.
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FWI

Unconstrained	optimization	problem:

Local	derivative	information	is	used	to	update	the	model:

‣ no	insurance	model	iterates	remain	(physically/geologically)	feasible

‣ no	mitigation	of	inversion	artifacts	by	controlling	model’s	complexity

mk+1 = mk � �rmf(mk)

minimize
m2Rm

f(m) =
1

2

NsX

i=1

kF (m)qi � dik22

objective modelling data

iterate gradient
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Stylized example

Forward	model:

Unconstrained	inversion:

‣when	source	q	misses	low	frequencies

‣w/o	regularization

d = F (c)q ⌘ c ⇤ q

minimize
c2Rm

1

2
kF (c)q� dk22
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Stylized example w/ constraints

Regularization	via	constraints	on	model:

‣minimal	velocity

‣monotonic	increasing	gradient	of	the	velocity

Leads	to	successful	recovery...

minimize

c�c0

1

2

kF (c)q� dk22 subject to Dc � 0
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Tikhonov regularization

Add	quadratic	penalty	terms:

‣ well-known	&	successful	technique
‣ is	differentiable
‣ not	an	exact	penalty
‣ regularization	may	adversely	affect	gradient	&	Hessian
‣ requires	non-trivial	choices	for	hyper	parameters
‣ not	easily	extended	to	edge-preserving							-	norms
‣ no	guarantees	that	all	model	iterates	are	regularized

minimize
m

f(m) +
↵

2
kR1mk2 + �

2
kR2mk2

`1

Andrey	Tikhonov
	1906–1993
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Regularization w/ constraints

Add	multiple	constraints:

‣ not	well-known	in	our	community
‣ requires	understanding	of	latest	optimization	techniques
‣ does	not	affect	gradient	&	Hessian
‣ easier	parameterization
‣ able	to	uniquely	project	onto	intersection	of	multiple	constraint	sets	
‣ constraints	do	not	need	to	be	differentiable
‣ constraints	are	satisfied	at	every	model	iterate

minimize

m
f(m) subject to m 2 C1

\
C2

Jean	Jacques	Moreau
	1923–2014
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find m 2 C1
\

C2

“Projection”-onto-convex-sets	solves	convex	feasibility	problems:	

Instead,	we	solve	convex	projection	problems:

‣ obtain	optimal	(also	feasible)	approximations	
‣ project	uniquely	w/	DYKSTRA	onto	intersections	of	convex	sets

POCS vs. best approximation

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J., 2011, doi:10.1561/2200000016

minimize

m
km� xk22 subject to m 2 C1

\
C2
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Our constraints

bounds:																																																where																							means

total-variation	norm	ball:

m 2 Box
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Find	a	model						,	closest	to						,	such	that	it	satisfies	the	constraints:

yields

‣ nonlinear	“minimal	complexity”	best	approximation	of	
‣ 																			when																																														and	
‣ edge	preserving

⌧ ! ⌧0 = TV(x)

Proximal projection

m x

m
m ! x

m 2 Box

PC(x) = argmin

m
km� xk22 subject to m 2 C1

\
C2
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FWI w/ non-differentiable penalties

Nonlinear	least-squares	objective	for	FWI	w/	TV:

‣ 																	is	not	differentiable	so	no	access	to																						and
‣ gradient-descent/quasi-Newton/(Gauss-Newton)	solvers	need	local	
derivative	information

TV(m) rf(m) r2f(m)

minimize
m

kdobs � dsim(m)k2 + ↵TV(m)
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FWI w/ non-differentiable penalties

Nonlinear	least-squares	objective	for	FWI	w/	TV:

‣ 																	is	not	differentiable	so	no	access	to																						and
‣ gradient-descent/quasi-Newton/(Gauss-Newton)	solvers	need	local	
derivative	information

TV(m) rf(m) r2f(m)

minimize
m

kdobs � dsim(m)k2 + ↵TV(m)
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Possible	solution			-smoothing	of	TV:

Differentiable	objective	with	penalty-parameter			:	

Problem:	need	to	select	2	unintuitive	hyper	parameters

TV✏(m) =
1

h

X

ij

q
(mi+1,j �mi,j)2 + (mi,j+1 �mi,j)2 + ✏2

FWI w/ non-differentiable constraints

✏

↵

minimize
m

f(m) + ↵TV✏(m)
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Numerical example 1

• FWI	w/	smoothed	TV-penalty	&	box	constraints
• data	w/	zero-mean	random	noise,
• starting	model	=	smoothed	true	model
• frequency	batches	from	3	Hz	to	10	Hz

knoisek2/ksignalk2 = 0.25

-0.01 -0.005 0 0.005 0.01
0

0.005

0.01

0.015
||x||1
ϵ = 1e-2
ϵ = 1e-3
ϵ = 1e-4

smoothed 
singularity
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α=10 7 , ϵ=10 -4
α=10 7 , ϵ=10 -3

α=10 7 , ϵ=10 -2

α=10 6 , ϵ=10 -4
α=10 6 , ϵ=10 -3

α=10 6 , ϵ=10 -2

α=10 5 , ϵ=10 -4
α=10 5 , ϵ=10 -3

α=10 5 , ϵ=10 -2

FWI	results
using	smoothed	TV	
for	various												
combinations		

↵, ✏

increased		
“blockiness”
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Problem	statement:

Our	approach:	solve	this	problem	directly.

There	are	many	ways	to	solve	it.

Constrained formulation

Tuesday, October 25, 2016



Algorithm design – wish list

‣ application	of	constraints	should	not	require	additional	expensive	
gradient	&	objective	calculations

‣ updated	models	need	to	satisfy	all	constraints	after	each	iteration

‣ arbitrary	number	of	constraints	should	be	handled	as	long	as	their	
intersection	is	non-empty

‣manual	tuning	of	parameters	should	be	limited	to	bare	minimum

‣ constraints	should	work	w/	black-box	gradients	&	objectives

Tuesday, October 25, 2016



Nested optimization strategy

Constrained	optimization:

via	3	levels	of	nested	optimization:

1. Projected	gradients	=	expensive	step
2. Dykstra’s	algorithm*	
3. Projection	onto	each	set	separately	(closed	form	or	w/	ADMM)

*	parameter	free
Tuesday, October 25, 2016



Algorithm:

Projected gradients

mk+1 = PC(mk �rmf(mk))
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Algorithm:

Constrained formulation

mk+1 = PC(mk �rmf(mk))

gradient	step	(proposed	model)projection	onto	constraint	set

PC(m) = argmin
x

kx�mk2 s.t. x 2
p\

i=1

Ci.

intersection	of	constraint	sets

Tuesday, October 25, 2016



Projection	onto	intersection:

Typically	no	closed-form	solution	->	use	Dykstra’s	algorithm.

Requires:
‣ projections	onto	each	set	separately
‣ vector	additions

Constrained formulation

PC(m) = argmin
x

kx�mk2 s.t. x 2
p\

i=1

Ci.

Tuesday, October 25, 2016
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Dykstra splitting
Toy	example:
find	projection	onto	intersection	of	circle	&	square

Algorithm 1 Dykstra.
x0 = m, p0 = 0, q0 = 0
For k = 0,1, . . .

yk = PC1(xk + pk)
pk+1 = xk + pk � yk
xk+1 = PC2(yk +qk)
qk+1 = yk +qk � xk+1

End

each set separately. This is a cheap and simple algorithm and therefore allows to find projections onto
complicated intersections of sets. The algorithm is given by #alg1.

A toy exmaple of the trajectory the iterates follow is shown in figure 1 .

1.8 1.9 2 2.1 2.2 2.3 2.4
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

x

y

1

2

3

4

567

Figure 1: The trajectory of Dykstra’s algorithm for a toy example with constraints y � 2 and x2 + y2  3.
Iterates 5, 6 and 7 coinside, the algorithm converged to the point closest to point number 1 and satisfying
both constraints. Note that the projection onto convex sets (POCS) algorithm would converge at point
number 3 and is clearly unsuitable for this type of projection problem.

While the gradient-projection algorithm is a solid approach, it can also be relatively slowly converging.
A potentially much faster algorithm is the class of quasi-Newton methods, which iteratively try to
approximate the Hessian by using just gradient and function value information. However, in general it
is not possible to just project quasi-Newton steps onto a convex set, just as in the gradient-projection
algorithm. The use of second-order information may cause a projected step to point in the opposite
direction and in general does not solve problem 5, but converges to a solution which does not correspond
to the problem. There are slighly more complicated algorithms which properly implement a projected
quasi-Newton algorithm. We select the projected-quasi-Newton (PQN) algorithm by Schmidt et al. (2009).
This algorithm finds a search direction which is in the intersection of the convex sets using the spectral
projected gradient algorithm (SPG) as a subproblem of an L-BFGS-like algorithm. This algorithm need
the objective function value, f (m) , its gradient and an algorithm to solve the projection problem 6. This
algorithm has very similar computational cost as the standard LBFGS algorithm, because the projections
are cheap to compute. See Schmidt et al. (2009) for some examples of strong emperical performance of
PQN versus projected-gradient for some non-geophysical examples.

The final algorithm is given by.

77th EAGE Conference & Exhibition 2015
IFEMA Madrid, Spain, 1–4 June 2015

Only	needs	projections	onto	each	set	separately!
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Projection	onto	bounds:	

Projection	onto	TV-ball:		split	variables,	then	use	ADMM	for	x	&	z

Individual projections

PC(m) = argmin
x

1

2
kx�mk22 s.t x 2 C

= argmin
x

1

2
kx�mk22 s.t krxk1  �

= argmin
x

1

2
kx�mk22 s.t kzk1  � , rx = z

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J., 2011, doi:10.1561/2200000016

PC1(mi) = median{li,mi, ui} 8i
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Workflow

gradient
User	provided	code	for	FWI

function	value
Optimization	algorithm	which	handles	projections

(projected	&	proximal	algorithms)

vector projected
vector

Algorithm	to	compute	projection	
onto	intersection

Projector	onto	set	1

Projector	onto	set	2

Projector	onto	set	p

model	update	direction
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Workflow

gradient
User	provided	code	for	FWI

function	value
projected	gradient	algorithm																																								

																										

vector projected
vector

Dykstra’s	algorithm																											

Bounds:	closed-form	solution

TV:	ADMM																	

Projector	onto	set	p

model	update	direction
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Dykstra’s	algorithm																																											

Workflow

User	provided	code	for	FWI projected	gradient	algorithm																																								
																										

Bounds:	closed-form	solution

																

Projector	onto	set	p

rmf(mk)

f(mk)
mk+1 = PC(mk �rmf(mk))

mk �rmf(mk) PC(mk �rmf(mk))

mk+1

PC(m) = argmin
x

kx�mk2 s.t. x 2
p\

i=1

Ci.

PC1(mi) = median{li,mi, ui}

PC2(m) = argmin
x

1
2kx�mk22 s.t kzk1  � , rx = z
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Numerical example 1 – revisited

• FWI	w/	TV-norm	&	bound	constraints
• data	w/	zero-mean	random	noise,
• starting	model	=	smoothed	true	model
• frequency	batches	from	3Hz	to	10	Hz

knoisek2/ksignalk2 = 0.25

Tuesday, October 25, 2016
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Penalties vs. constraints

Regularization	w/	penalties:
‣ inversion	results	for	various											combinations	behave	unpredictably
‣ challenges	proper	parameter	settings
‣ offers	no	guarantees	of	feasibility	for	each	model	iterate

Regularization	w/	constraints:
‣ inversion	results	behave	predictably	for	increasing	
‣ edges	are	preserved	for	not	too	large	
‣ inversion	artifacts	appear	for	too	large	

Suggests	cooling	technique	w/	warm	starts	where					is	increased	slowly...

↵, ✏

⌧
⌧
⌧

⌧
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Case study. Improve delineation of salt for a 
good starting model but poor (6 dB) data...
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Reduced BP model – modelling parameters

‣ number	of	sources:	132;	number	of	receivers:	311

‣ receiver	spacing:	40m,	source	spacing:	80m,	max	offset	11.5	km

‣ grid	size:	20	m
‣ known	Ricker	wavelet	sources	with	15Hz	peak	frequency
‣ data	available	starting	at	3	Hz
‣ 8	simultaneous	shots	w/	Gaussian	weights	w/	redraws

‣ starting	model	=	smoothed	true	model

‣ inversion	crime	but	poor	data

Billette, F., and Brandsberg-Dahl, S., 2005
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True velocity model – reduced by a factor of 2.5
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Starting model

38

Initial velocity model
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Adjoint-state w/ noisy data

39

50% noise, FWI, bounds only, 3rd cycle
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WRI /w TV-constraints

40

50% noise, WRI, TV, 3rd cycle
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Heuristic

Multiple	frequency	cycles:
‣ warm	starts
‣ increasingly	relaxed	TV	constraints	&	fixed	bound	constraints
‣ starts	w/	relaxed	TV-norm	of	starting	model

Extend	search	space:
‣ make	sure	data	is	fitted
‣ optimize	over	model	&	(source)	wavefields
‣ jointly	fit	data	&	wave	equation	(physics)
‣ use	noise	level	to	automatically	select	trade-off	data	&	PDE	(physics)	fit	

Ernie Esser, Lluís Guasch, Felix J. Herrmann, and Mike Warner, “Constrained waveform inversion for automatic salt flooding”, The Leading 
Edge, vol. 35, p. 235-239, 2016
Ernie Esser, Lluís Guasch, Tristan van Leeuwen, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Total-variation regularization strategies in full-
waveform inversion”. 2016
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for each source i
      solve 
      solve 
      
end

for each source i

      solve 

end

WRI	method: Adjoint-state	method:

✓
Pi

�Ai(m)

◆
u�,i ⇡

✓
di

�qi

◆

g = g + �2!2diag(ūi,�)
⇤(A(m)ūi,� � qi)

A(m)ui = qi

A(m)⇤vi = P ⇤
i (Piui � di)

g = g + !2diag(ui)
⇤vi

correlation	
wavefield	&	
data	residual

correlation	proxy	
wavefield	&	PDE	

residual

Wavefield Reconstruction Inversion – gradient

Patent application WO2014172787 –  A PENALTY METHOD FOR PDE-CONSTRAINED OPTIMIZATION pending

Tristan van Leeuwen and Felix J. Herrmann, “A penalty method for PDE-constrained optimization in inverse problems”, Inverse 
Problems, vol. 32, p. 015007, 2015.
Tristan van Leeuwen and Felix J. Herrmann, “Mitigating local minima in full-waveform inversion by expanding the search space”, 
Geophysical Journal International, vol. 195, p. 661-667, 2013
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BP model – inversion parameters

Optimization	specs:

‣spectral-projected	gradients
‣non-monotone	linesearch	w/	window	size	of	5

‣max	8	DYKSTRA	iterations

Constraint	specs:

‣ frequency	continuation	3–9	Hz	in	consecutive	batches	of	2
‣3	warm	started	frequency	sweeps		w/																																		&		

‣anisotropic	TV
⌧0 = 1.00⇥ TV(m0)
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2nd cycle
25% noise, FWI, bounds only, 2nd cycle
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3rd cycle
25% noise, FWI, bounds only, 3rd cycle

0 2000 4000 6000 8000 10000 12000

x [m]

0

500

1000

1500

2000

2500

3000

z 
[m

]

1500

2000

2500

3000

3500

4000

4500

5000

25% noise, FWI, TV, 3rd cycle

0 2000 4000 6000 8000 10000 12000

x [m]

0

500

1000

1500

2000

2500

3000

z 
[m

]

1500

2000

2500

3000

3500

4000

4500

5000

25% noise, WRI, bounds only, 3rd cycle

0 2000 4000 6000 8000 10000 12000

x [m]

0

500

1000

1500

2000

2500

3000

z 
[m

]

1500

2000

2500

3000

3500

4000

4500

5000

25% noise, WRI, TV, 3rd cycle

0 2000 4000 6000 8000 10000 12000

x [m]

0

500

1000

1500

2000

2500

3000

z 
[m

]

1500

2000

2500

3000

3500

4000

4500

5000

knoisek2/ksignalk2 = 0.25

bounds	only

bounds	&	TV

FWI WRI

Tuesday, October 25, 2016



1st cycle cycle
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2nd cycle
50% noise, FWI, bounds only, 2nd cycle
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3rd cycle
50% noise, FWI, bounds only, 3rd cycle
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Conclusions & generalizations

Adding	constraints	to	inversion:

‣ leaves	gradient	(and	Hessian)	untouched	
‣ is	robust	&	behaves	predictably	w/	model	iterates	that	remain	feasible

‣ intuitive	parameterizations	of	prior	information	in	>2	constraints

‣ can	be	accelerated	w/	quasi-Newton	&	parallelized	projections
‣ “black	box”	solution	that	works	w/	any	implementation	for	FWI/WRI

Extensions	paired	w/	constraints	are	a	powerful	combination!
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