Efficient approach for quantifying uncertainty of wavefield reconstruction inversion

Zhilong Fang＊，Chia Ying Leet，Curt Da Silva＊，Tristan van Leeuwen＊＊and Felix J．Herrmann＊
＊Seismic Laboratory for Imaging and Modeling（SLIM），University of British Columbia
＊＊Mathematical Institute，Utrecht University

SLIMe
University of British Columbia

x_{2}

 都

 都}

（10126

University of British Columbia
\qquad
．
 $-$

\qquad
\square
.
$+2$

Abstract

\square

\qquad
－
－

－ ．
 （
 $=$


```
（
```


\qquad

Motivation

Noisy acquired data

Motivation

Uncertainty in data

Risk in oil and gas volume

Prior probability density function (PDF):

$$
\mathbf{m} \longrightarrow \rho_{\text {prior }}(\mathbf{m})
$$

Likelihood PDF: given datad

$$
\mathbf{m} \longrightarrow \rho_{\text {like }}(\mathbf{d} \mid \mathbf{m})
$$

Posterior PDF (Bayes' rule):

$$
\rho_{\text {post }}(\mathbf{m} \mid \mathbf{d})=\rho_{\text {like }}(\mathbf{d} \mid \mathbf{m}) \rho_{\text {prior }}(\mathbf{m})
$$

Bayesian inference

Mean value of the model:
$\mathbb{E}(\mathbf{m})=\int \mathbf{m} \rho_{\text {post }}(\mathbf{m}) d \mathbf{m}$,
Covariance matrix:

$$
C_{i, j}=\mathbb{E}\left(m_{i} m_{j}\right)-\mathbb{E}\left(m_{i}\right) \mathbb{E}\left(m_{j}\right),
$$

Bayes w/ FWI

Bayes w/ FWI

Reduced formulation in the frequency domain:

$$
\begin{aligned}
& F(\mathbf{m})=\mathbf{P A}^{-1} \mathbf{q} \\
& \mathbf{A}=\Delta+\omega^{2} \mathbf{m} \\
& \mathbf{m}: \text { Squared-slowness } \\
& \mathbf{q}: \text { Source } \\
& \omega: \text { Frequency } \\
& \Delta: \text { Laplacian operator } \\
& \mathbf{P}: \text { Projection operator of receiver }
\end{aligned}
$$

Bayes w/ FWI

Posterior PDF of FWI:

$$
\rho_{\text {post }}(\mathbf{m} \mid \mathbf{d}) \propto \exp \left(-\frac{1}{2}\left\|\mathbf{P A}(\mathbf{m})^{-1} \mathbf{q}-\mathbf{d}\right\|_{\boldsymbol{\Sigma}_{\text {noise }}^{-1}}^{2}-\frac{1}{2}\left\|\mathbf{m}-\mathbf{m}_{\text {prior }}\right\|_{\boldsymbol{\Sigma}_{\text {prior }}^{-1}}^{2}\right)
$$

Bayes w/ FWI

Posterior PDF of FWI:

$$
\rho_{\text {post }}(\mathbf{m} \mid \mathbf{d}) \propto \exp \left(-\frac{1}{2}\left\|\mathbf{P A}(\mathbf{m})^{-1} \mathbf{q}-\mathbf{d}\right\|_{\boldsymbol{\Sigma}_{\text {noise }}^{-1}}^{2}-\frac{1}{2}\left\|\mathbf{m}-\mathbf{m}_{\text {prior }}\right\|_{\boldsymbol{\Sigma}_{\text {prior }}^{-1}}^{2}\right)
$$

Strong nonlinearity
Many local minima

Bayes w/ FWI

Posterior PDF of FWI:

$$
\rho_{\text {post }}(\mathbf{m} \mid \mathbf{d}) \propto \exp \left(-\frac{1}{2}\left\|\mathbf{P A}(\mathbf{m})^{-1} \mathbf{q}-\mathbf{d}\right\|_{\boldsymbol{\Sigma}_{\text {noise }}^{-1}}^{2}-\frac{1}{2}\left\|\mathbf{m}-\mathbf{m}_{\text {prior }}\right\|_{\boldsymbol{\Sigma}_{\text {prior }}^{-1}}^{2}\right)
$$

Strong nonlinearity ${ }_{-\log \rho_{\text {post }}(\mathbf{m} \mid \mathbf{d})} \uparrow$ Many local minima

Two layer example - FWI

Bayes w/ FWI

Local minima:

- difficult to find the maximum a posterior (MAP) estimate
- slow down McMC convergence
- render posterior PDF "less Gaussian"

Wavefield Reconstruction Inversion - WRI

Penalty formulation:

$$
\min _{\mathbf{m}, \mathbf{u}} \frac{1}{2}\|\mathbf{P u}-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{A}(\mathbf{m}) \mathbf{u}-\mathbf{q}\|_{2}^{2}
$$

Properties:

- bi-linear w/ respect to \mathbf{u} and \mathbf{m}
- larger searching space

WRI vs FWI

Larger \# of degrees of freedom

"more convex"
less local minima
\mathbf{u}
m

Solving WRI

Variable projection:

$$
\min _{\mathbf{m}} \frac{1}{2}\|\mathbf{P} \overline{\mathbf{u}}(\mathbf{m})-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{A}(\mathbf{m}) \overline{\mathbf{u}}(\mathbf{m})-\mathbf{q}\|_{2}^{2}
$$

where

$$
\overline{\mathbf{u}}(\mathbf{m})=\arg \min _{\mathbf{u}} \frac{1}{2}\|\mathbf{P} \mathbf{u}-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{A}(\mathbf{m}) \mathbf{u}-\mathbf{q}\|_{2}^{2}
$$

WRI - iterations

WRI method

for each source i
solve $\binom{\mathbf{P}_{i}}{\lambda \mathbf{A}_{i}(\mathbf{m})} \mathbf{u}_{\lambda, i} \approx\binom{\mathbf{d}_{i}}{\lambda \mathbf{q}_{i}}$
$\mathbf{g}=\mathbf{g}+\lambda^{2} \omega^{2} \operatorname{diag}\left(\overline{\mathbf{u}}_{i, \lambda}\right)^{*}\left(A(\mathbf{m}) \overline{\mathbf{u}}_{i, \lambda}-\mathbf{q}_{i}\right)$ end
$\mathbf{m}=\mathbf{m}-\alpha \mathbf{g}$
correlation proxy wavefield \& PDE residual

Conventional method

for each source i
solve $\mathbf{A}_{i}(\mathbf{m}) \mathbf{u}_{i}=\mathbf{q}_{i}$
solve $\mathbf{A}_{i}(\mathbf{m})^{*} \mathbf{v}_{i}=\mathbf{P}_{i}^{*}\left(\mathbf{P}_{i} \mathbf{u}_{i}-\mathbf{d}_{i}\right)$
$\mathbf{g}=\mathbf{g}+\omega^{2} \operatorname{diag}\left(\mathbf{u}_{i}\right)^{*} \mathbf{v}_{i}$
end
$\mathbf{m}=\mathbf{m}-\alpha \mathbf{g}$
correlation wavefield \& data residual

Bayes w/ WRI

Posterior PDF of WRI:

$\rho_{\text {post }}(\mathbf{m} \mid \mathbf{d}) \propto$

$$
\exp \left(-\frac{1}{2} \| \underline{\left.\mathbf{P} \overline{\mathbf{u}}(\mathbf{m})-\mathbf{d}\left\|_{\boldsymbol{\Sigma}_{\text {noise }}^{-1}}^{2}-\frac{\lambda^{2}}{2}\right\| \mathbf{A}(\mathbf{m}) \overline{\mathbf{u}}(\mathbf{m})-\mathbf{q} \|^{2}-\underline{\frac{1}{2}\left\|\mathbf{m}-\mathbf{m}_{p}\right\|_{\boldsymbol{\Sigma}_{\text {prior }}^{-1}}^{2}}\right), ~, ~}\right.
$$

Likelihood
Prior
where

$$
\overline{\mathbf{u}}(\mathbf{m})=\arg \min _{\mathbf{m}} \frac{1}{2}\|\mathbf{P u}-\mathbf{d}\|_{\boldsymbol{\Sigma}_{\text {noise }}^{-1}}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{A}(\mathbf{m}) \mathbf{u}-\mathbf{q}\|^{2} .
$$

Two layer example - WRI

$\mathbf{W R I}-\log \rho_{\text {post }}(\mathbf{m} \mid \mathbf{d})$

Two layer example - FWI

Challenges for large-scale UQ

Evaluations of the posterior PDF

- many PDE solves to evaluate PDF
- expensive PDE solves

High-dimensional space to explore

- numerical integration too expensive
- McMC based methods are impractical
- too many iterations
- converge too slow

UQ for large-scale problems

Approximate posterior PDF by Gaussians

Sample the Gaussians w/ Randomize Then Optimize (RTO) method

Quadratic approximation of $-\log \rho_{\text {post }}(\mathbf{m})$

$-\log \rho_{\text {post }}(\mathbf{m})=f(\mathbf{m})$

$$
\approx f\left(\mathbf{m}_{*}\right)+\frac{1}{2}\left(\mathbf{m}-\mathbf{m}_{*}\right)^{\top} \mathbf{H}\left(\mathbf{m}-\mathbf{m}_{*}\right):=\bar{f}(\mathbf{m})
$$

where $\mathbf{H}=\frac{\partial^{2} f}{\partial \mathbf{m}^{2}}$.

Approximate posterior PDF

Gaussian approximation:

$$
\rho_{\mathrm{post}}(\mathbf{m}) \approx \rho_{\mathrm{Gauss}}(\mathbf{m})=\mathcal{N}\left(\mathbf{m}_{*}, \mathbf{H}^{-1}\right)
$$

where

$$
\begin{aligned}
& \mathbf{H}=\mathbf{H}_{\mathrm{l}}+\mathbf{H}_{\mathrm{p}}, \\
& \mathbf{H}_{\mathrm{l}}=\frac{\partial^{2} f_{\mathrm{l}}(\mathbf{m})}{\partial \mathbf{m}^{2}}, \quad f_{\mathrm{l}}(\mathbf{m})=-\log \rho_{\text {like }}(\mathbf{d} \mid \mathbf{m}), \\
& \mathbf{H}_{\mathrm{p}}=\frac{\partial^{2} f_{\mathrm{p}}(\mathbf{m})}{\partial \mathbf{m}^{2}}, \quad f_{\mathrm{p}}(\mathbf{m})=-\log \rho_{\text {prior }}(\mathbf{m}) .
\end{aligned}
$$

Approximate posterior PDF

Form Hessian

Gauss-Newton Hessian:

$$
\mathbf{H}_{1}=\mathbf{G}^{\top} \mathbf{A}^{-\top} \mathbf{P}^{\top}\left(\mathbf{I}+\frac{1}{\lambda^{2} \sigma^{2}} \mathbf{P A}^{-1} \mathbf{A}^{-\top} \mathbf{P}^{\top}\right)^{-1} \mathbf{P} \mathbf{A}^{-1} \mathbf{G}
$$

where $\Sigma_{\text {noise }}=\sigma^{2} \mathbf{I}$ and $\mathbf{G}=\frac{\partial \mathbf{A} \overline{\mathbf{u}}}{\partial \mathbf{m}}$.

Form Hessian

Gauss-Newton Hessian:

$$
\begin{aligned}
& \mathbf{H}_{l}=\underbrace{\mathbf{G}^{\top} \mathbf{A}^{-\top} \mathbf{P}^{\top}}_{\mathbf{W}^{\top}} \underbrace{\left.\mathbf{I}+\frac{1}{\lambda^{2} \sigma^{2}} \mathbf{P A}^{-1} \mathbf{A}^{-\top} \mathbf{P}^{\top}\right)^{-1}}_{\mathbf{S}} \mathbf{P} \mathbf{A}^{-1} \mathbf{G}, \\
& \text { where } \Sigma_{\text {noise }}=\sigma^{2} \mathbf{I} \text { and } \mathbf{G}=\frac{\partial \mathbf{A} \overline{\mathbf{u}}}{\partial \mathbf{m}}
\end{aligned}
$$

GN Hessian of WRI

隺 W
Computational cost:
$n_{\text {freq }} \times\left(n_{\text {src }}+n_{\text {rcv }}\right)$
storage cost:
$n_{\text {freq }} \times n_{\text {grid }} \times\left(n_{\text {src }}+n_{\text {rcv }}\right)$
in parallel !!

Selection of λ

Compute wavefields:

$$
\overline{\mathbf{u}}(\mathbf{m})=\left(\frac{1}{\sigma^{2}} \mathbf{P}^{\top} \mathbf{P}+\lambda^{2} \mathbf{A}(\mathbf{m})^{\top} \mathbf{A}(\mathbf{m})\right)^{-1}\left(\lambda^{2} \mathbf{A}(\mathbf{m})^{\top} \mathbf{q}+\frac{1}{\sigma^{2}} \mathbf{P}^{\top} \mathbf{d}\right)
$$

μ_{1} : maximum eigenvalue of the matrix $\frac{1}{\sigma^{2}} \mathbf{A}^{-\top} \mathbf{P}^{\top} \mathbf{P} \mathbf{A}^{-1}$,

$$
\begin{aligned}
& \lambda^{2} \gg \mu_{1} \rightarrow \overline{\mathbf{u}}(\mathbf{m}) \approx \mathbf{A}(\mathbf{m})^{-1} \mathbf{q} \\
& \lambda^{2} \ll \mu_{1} \rightarrow \frac{1}{\sigma^{2}} \mathbf{P}^{\top} \mathbf{P}+\lambda^{2} \mathbf{A}(\mathbf{m})^{\top} \mathbf{A}(\mathbf{m}) \text { is ill conditioned }
\end{aligned}
$$

Select $\lambda^{2}=\alpha \mu_{1}$

UQ for large-scale problems

Approximate posterior PDF by Gaussians

Sample the Gaussians w/ Randomize Then Optimize (RTO) method

Conventional method

Sample Gaussian distribution:

$$
\rho_{\mathrm{Gauss}}(\mathbf{m}) \propto \exp \left(-\frac{1}{2}\left(\mathbf{m}-\mathbf{m}_{*}\right)^{\top} \mathbf{H}\left(\mathbf{m}-\mathbf{m}_{*}\right)\right)
$$

Cholesky factorization:

$$
\begin{gathered}
\mathbf{H}=\mathbf{L}^{\top} \mathbf{L} \\
\mathbf{m}_{\mathbf{s}}=\mathbf{m}_{*}+\mathbf{L}^{-1} \mathbf{r}, \mathbf{r} \sim \mathcal{N}\left(0, \mathcal{I}_{n_{\text {grid }} \times n_{\text {grid }}}\right)
\end{gathered}
$$

\mathbf{H} should be an explicit matrix, computational cost is $\mathcal{O}\left(n_{\text {grid }}^{3}\right)$.

RTO method

Re-formulate the posterior distribution with:

$$
\mathbf{H}=\mathbf{H}_{l}+\mathbf{H}_{\mathrm{p}}, \mathbf{H}_{\mathrm{l}}=\mathbf{L}_{\mathrm{l}}^{\top} \mathbf{L}_{\mathrm{l}} \text {, and } \mathbf{H}_{\mathrm{p}}=\mathbf{L}_{\mathrm{p}}^{\top} \mathbf{L}_{\mathrm{p}},
$$

then

$$
\begin{aligned}
\rho_{\text {Gauss }}(\mathbf{m}) \propto \exp (& -\frac{1}{2}\left(\mathbf{L}_{l} \mathbf{m}-\mathbf{L}_{l} \mathbf{m}_{*}\right)^{\top}\left(\mathbf{L}_{l} \mathbf{m}-\mathbf{L}_{l} \mathbf{m}_{*}\right) \\
& \left.-\frac{1}{2}\left(\mathbf{L}_{\mathrm{p}} \mathbf{m}-\mathbf{L}_{\mathrm{p}} \mathbf{m}_{*}\right)^{\top}\left(\mathbf{L}_{\mathrm{p}} \mathbf{m}-\mathbf{L}_{\mathrm{p}} \mathbf{m}_{*}\right)\right)
\end{aligned}
$$

RTO method

Generate a sample by solving the optimization problem:

$$
\begin{aligned}
\mathbf{m}_{\mathrm{s}}=\arg \min _{\mathbf{m}} & \left\|\mathbf{L}_{\mathrm{l}} \mathbf{m}-\left(\mathbf{L}_{\mathrm{l}} \mathbf{m}_{*}+\mathbf{r}_{1}\right)\right\|^{2}+ \\
& \left\|\mathbf{L}_{\mathrm{p}} \mathbf{m}-\left(\mathbf{L}_{\mathrm{p}} \mathbf{m}_{*}+\mathbf{r}_{\mathrm{p}}\right)\right\|^{2}
\end{aligned}
$$

where

$$
\mathbf{r}_{1} \sim \mathcal{N}\left(0, \mathcal{I}_{n_{\mathrm{rcv}} \times n_{\mathrm{rcv}}}\right) \text { and } \mathbf{r}_{\mathrm{p}} \sim \mathcal{N}\left(0, \mathcal{I}_{n_{\mathrm{grid}} \times n_{\mathrm{grid}}}\right) .
$$

RTO method

Factorization of \mathbf{H}_{1} :

$$
\begin{aligned}
\mathbf{H}_{l} & =\mathbf{L}_{l}^{\top} \mathbf{L}_{1}, \\
\mathbf{L}_{l} & =\frac{\left(\mathbf{I}+\frac{1}{\lambda^{2} \sigma^{2}} \mathbf{P A}^{-1} \mathbf{A}^{-\top} \mathbf{P}^{\top}\right)^{-\frac{1}{2}} \mathbf{P A}^{-1} \mathbf{G} .}{n_{\mathrm{rcv}} \times n_{\mathrm{rcv}}}
\end{aligned}
$$

RTO method

A simple example:
$\mathbf{m}_{\mathrm{MAP}}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$,
$\mathbf{L}_{\text {like }}=\left[\begin{array}{cc}1 & 6 \\ 2 & 7 \\ 3 & 8 \\ 4 & 9 \\ 5 & 10\end{array}\right], \quad$ and $\quad \mathbf{L}_{\text {prior }}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Covariance matrix

RTO method (100000 realizations) vs analytical solution:

$$
\begin{aligned}
\operatorname{Cov}_{\text {anal }} & =\left[\begin{array}{rr}
0.185 & -0.072 \\
-0.072 & 0.031
\end{array}\right] \text { and } \\
\operatorname{Cov}_{\mathrm{RTO}} & =\left[\begin{array}{rr}
0.185 & -0.072 \\
-0.072 & 0.031
\end{array}\right]
\end{aligned}
$$

Marginal distribution comparison

RTO method with 100000 realizations (red) vs Analytical solution (blue)

Numerical Experiment - layer model

Depth of sources and receivers: 50 m
Number of sources and receivers: 61
Frequency: 2,3 and 4 Hz
Lambda: 4e4
sigma: 10

(a) True model and prior model

(b) STD of the prior distribution

Randomized Maximum Likelihood - RML

Generate independent samples from $\rho_{\text {post }}(\mathbf{m})$ by solving:

$$
\begin{aligned}
\min _{\mathbf{m}} & \frac{1}{2}\left(\sigma^{-2}\left\|\mathbf{P} \overline{\mathbf{u}}(\mathbf{m})-\mathbf{d}-\mathbf{r}_{\mathrm{d}}\right\|^{2}+\lambda^{2}\left\|\mathbf{A}(\mathbf{m}) \overline{\mathbf{u}}(\mathbf{m})-\mathbf{q}-\mathbf{r}_{\mathrm{s}}\right\|^{2}\right) \\
& +\frac{1}{2}\left\|\mathbf{m}-\mathbf{m}_{\mathrm{p}}-\mathbf{r}_{\mathrm{p}}\right\|_{\Sigma_{\text {prior }}^{-1}}^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{d}} \sim \mathcal{N}\left(0, \sigma^{2} \mathcal{I}_{n_{\mathrm{rcv}} \times n_{\mathrm{rcv}}}\right), \\
& \mathbf{r}_{\mathrm{s}} \sim \mathcal{N}\left(0, \lambda^{-2} \mathcal{I}_{n_{\mathrm{grid}} \times n_{\mathrm{grid}}}\right), \\
& \mathbf{r}_{\mathrm{p}} \sim \mathcal{N}\left(0, \Sigma_{\text {prior }}\right) .
\end{aligned}
$$

STD result comparison

(a) STD of prior distribution

38

Cross section comparison

BG Compass model

(a) True model

 Frequency: 2-31 Hz
Lambda: 1e4

Depth of sources and receivers: 50

Number of sources and receivers: 91 / 451

 Central frequency: 15 Hz
(c) STD of prior distribution

Data

$$
\sigma=34
$$

(a) Data at 2 Hz

(b) Signal to noise ratio

Prior and initial model

MAP estimate

Posterior STD

Prior STD

Cross section comparison

- prior

Cross section comparison

- posterior vs prior

(a) $x=1000 \mathrm{~m}$

(b) $x=2500 \mathrm{~m}$

(c) $x=4000 \mathrm{~m}$

Cross section comparison

- 95% confidence interval vs 10 realizations by RML

(a) $x=1000 \mathrm{~m}$

(b) $x=2500 \mathrm{~m}$

(c) $x=4000 \mathrm{~m}$

Conclusions

Penalty formulation of posterior PDF

- is a bi-Gaussian PDF
- has a better Gaussian approximation compared to reduced formulation

Efficient sampling method

- Gaussian approximation avoids large computational cost associated with evaluating posterior PDF iteratively
- the implicit GN Hessian operator provides a fast way to compute matrix-vector product
- RTO method does not require an explicit Hessian matrix and expensive Cholesky factorization

Future work

Application to 3D problems.

Bayesian with constraint prior information.

Effects of different acquisition scenarios to the UQ analysis.

Reference

1.Johnathan M Bardsley, Antti Solonen, Heikki Haario, and Marko Laine. Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems. SIAM Journal on Scientific Computing, 36(4):A1895-A1910, 2014.
2. Yan Chen and Dean S Oliver. Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Mathematical Geosciences, 44(1):1-26, 2012.
3.Knud Skou Cordua, Thomas Mejer Hansen, and Klaus Mosegaard. Monte carlo full-waveform inversion of crosshole gpr data using multiple-point geostatistical a priori information. Geophysics, 77(2):H19-H31, 2012.
4.Zhilong Fang, C Lee, C Silva, F Herrmann, and Rachel Kuske. Uncertainty quantification for wavefield reconstruction inversion. In 77th EAGE Conference and Exhibition 2015, 2015.
5.James Martin, Lucas C. Wilcox, Carsten Burstedde, and Omar Ghattas. A Stochastic Newton MCMC Method for Largescale Statistical Inverse Problems with Application to Seismic Inversion. SIAM Journal on Scientific Computing, 34(3):A1460-A1487, 2012.
6.Tristan van Leeuwen and Felix J. Herrmann. Mitigating local minima in full-waveform inversion by expanding the search space. Geophysical Journal International, 195:661-667, 10 2013b.
7.Tristan van Leeuwen and Felix J. Herrmann. A penalty method for PDE-constrained optimization in inverse problems. Inverse Problems, 32(1):015007, 122015.
8.Håvard Rue. Fast sampling of gaussian markov random fields. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):325-338, 2001.
9.Albert Tarantola and Bernard Valette. Inverse problems = quest for information. Journal of Geophysics, 50: 159-170, 1982

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research \& Development.

