
University	of	British	Columbia
SLIM

Curt	Da	Silva	&	Felix	Herrmann

A Unified 2D/3D Software Environment for Large
Scale Time-Harmonic Full Waveform Inversion

Tuesday, October 25, 2016

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

3D Full Waveform Inversion

Complicated	process
• computationally	intensive

• requires	lots	of	memory,	time

• large	amount	of	programmer	effort	to	get	things	fast

• often	speed	is	the	trade	off	for	correctness

2
Tuesday, October 25, 2016

3D Full Waveform Inversion

Industry	codebases,	while	fast
• are	inflexible	-	hard	to	integrate	new	changes

• are	incorrect	-	no	‘true	derivatives’	of	the	underlying	modelling	
code

• are	poorly	maintained	-	a	new	hire	will	have	no	idea	what’s	going	
on

3
Tuesday, October 25, 2016

3D Full Waveform Inversion

As	a	result
• codes	are	disconnected	from	mathematical	underpinnings

• bugs	are	hard	to	diagnose

• difficult	to	incorporate	new	ideas	from	academia,	research	labs	in	
to	production-level	codes

4
Tuesday, October 25, 2016

Software organization

Software	hierarchy	manages	complexity
• human	brains	have	very	limited	working	memory

• if	a	particular	part	of	a	program	only	has	one	function,	people	
using/debugging	it	only	have	to	think	about	that	one	function

• if	software	is	easier	to	reason	about	->	it’s	easier	to	work	with,	
easier	to	test	

5
Tuesday, October 25, 2016

Software organization

Software	hierarchy	manages	complexity
• we	don’t	have	to	sacrifice	performance	

• lowest	level	operations	implemented	in	C	w/multithreading

• hiding	irrelevant	details	at	each	level
• higher	level	functions	don’t	have	any	idea	about	C/fortran/that	gross	
stuff

6
Tuesday, October 25, 2016

Software organization

Anything	that	we	do	that	isn’t	solving	PDEs	is	essentially	
irrelevant,	computation	time-wise

7
Tuesday, October 25, 2016

Software organization

Anything	that	we	do	that	isn’t	solving	PDEs	is	essentially	
irrelevant,	computation	time-wise

• advantageous	for	software	design	->	any	overhead	introduced	is	
negligible	compared	to	solving	PDEs

• if	a	single	wavefield	can	be	stored	in	RAM	-	true	for	low	frequency	
time	harmonic	FWI

8
Tuesday, October 25, 2016

Software organization

PDEs	are	the	computational	bottleneck
• design	our	software	for	maximum	ease	of	use	+	“plug	and	play”	
components

• speedups	made	to	solving	PDEs	propagate	to	whole	framework

9
Tuesday, October 25, 2016

FWI Problem

10

								-	discrete	model	vector
								-	number	of	shots																																																																										
								-	receiver	restriction	operator
																																-	monochromatic	Helmholtz	system	for	shot	
								-	measured	data	for	shot	

min
m

1

2Ns

NsX

i=1

kPrH(m)�1qi � dik22

m
Ns
Pr

H(m)ui = qi
di

i

Tuesday, October 25, 2016

New way to organize FWI Software

11

Modeling	matrix	:
multiplication/divisionopAbstractMatrix

Tuesday, October 25, 2016

opAbstractMatrix

12

A	SPOT	operator
• linear	operator	class	-	behaves	like	a	matrix
• knows	how	to	multiply,	divide	itself
• can	handle	matrix-free	operations	or	form	sparse	matrix	for	2D	
problems

Extensions
• Kaczmarz	sweeps
• Jacobi	iterations

Tuesday, October 25, 2016

opAbstractMatrix

Particular	matrix-vector	products	specified	at	construction

discrete_helmholtz	-	constructs	Helmholtz	operator	with	
particular	parameters

• can	swap	between	stencils
• construct	multigrid	preconditioner

13
Tuesday, October 25, 2016

Excerpt from discrete_helmholtz

14

 wn = param2wavenum(v_pml,freq,model.unit);
 switch scheme
 case PDEopts.HELM3D_STD7
 Hmvp = FuncObj(@helm3d_7pt_mvp_mex,{vec(wn),vec(dt),vec(nt),npml,freq,[],[]});
 jacobi = FuncObj(@helm3d_7pt_jacobi_mex,{vec(wn),vec(dt),vec(nt),npml,freq,[],[],[],[]});
 kacz_sweep = [];
 case PDEopts.HELM3D_OPERTO27
 Hmvp = FuncObj(@helm3d_operto27_mvp,{wn,dt,nt,npml,[],n_threads,[],false});
 jacobi = [];
 kacz_sweep = FuncObj(@helm3d_operto27_kaczswp,{wn,dt,nt,npml,[],[],[],[],[]});
 if nargout >= 3
 [~,wn] = param2wavenum(v_pml,freq,model.unit);
 dHmvp = FuncObj(@helm3d_operto27_mvp,{wn,dt,nt,npml,[],n_threads,[],true});
 [~,~,wn] = param2wavenum(v_pml,freq,model.unit);
 ddHmvp = FuncObj(@helm3d_operto27_mvp,{wn,dt,nt,npml,[],n_threads,[],true});
 end
 end
 helm_params = struct;
 helm_params.multiply = Hmvp;
 helm_params.jacobi = jacobi;
 helm_params.kacz_sweep = kacz_sweep;
 helm_params.N = prod(nt);
 helm_params.iscomplex = true;
 H = opAbstractMatrix(mat_mode,helm_params,opts.solve_opts);

Tuesday, October 25, 2016

New way to organize FWI Software

15

Modeling	matrix	:
multiplication/divisionopAbstractMatrixC-based	MVPMultithreaded	

Mat-vec	multiply

Tuesday, October 25, 2016

C-based Matrix Vector Product

16

Implementation	of	27-pt	compact	stencil	[1]

Multi-threaded	along	the	z-coordinate	with	openMP

Forward,	adjoint	modes

Text[1]	Operto	et.	al.	“3D	finite-difference	frequency-domain	modeling	of	visco-acoustic	wave	
propagation	using	a	massively	parallel	direct	solver:	A	feasibility	study”,	Geophysics	2007

Tuesday, October 25, 2016

Helmholtz matrix

17

In	2D,	we	can	afford	to	use	explicit	sparse	matrices	+	fast	direct	
solvers

• implementation	of	[1]

Explicit	matrices	VS	implicit	matrices	is	opaque	to	the	user
• interface	remains	the	same	

Text
[1]	Chen,	et.	al.	“An	Optimal	9-Point	Finite	Difference	Scheme	For	The	Helmholtz	Equation	With	PML.”,	2013

Tuesday, October 25, 2016

C-based Matrix Vector Product

Matlab	Compiler
• write	stencil-based	code	in	Matlab	->	C	code	with	openMP	
multithreading

• nearly	as	fast	as	native	C	code,	much	easier	to	develop

18
Tuesday, October 25, 2016

New way to organize FWI Software

19

Modeling	matrix	:
multiplication/divisionopAbstractMatrixC-based	MVPMultithreaded	

Mat-vec	multiply

Linearsolve
Abstract	linear

solver

Tuesday, October 25, 2016

Linearsolve

20

Abstract	interface	for	“Solve	Ax	=	b	with	a	specified	method”
• encourages	code	reuse	-	smoothers	for	multigrid,	preconditioner	
applications

• calls	the	specified	method	(GMRES,CG,	etc.)	with	the	prescribed	
number	of	iterations,	right	hand	side,	initial	guess,	tolerance,	and	
preconditioner

Tuesday, October 25, 2016

LinSolveOpts

Object	for	storing
• linear	solver	method
• maximum	outer	iterations
• maximum	inner	iterations	(for	some	solvers)
• tolerance
• preconditioner

As	well	as	default	options	for	these
• Solvers:	CG,	FGMRES,	LU,	etc.
• Preconditioners:	ML-GMRES,	Shifted	Laplacian,	etc.

21
Tuesday, October 25, 2016

Multilevel-GMRES

22

GMRES()Smoother

Coarse	solve

Preconditioned	by

k
o

, k
i

GMRES()k
o

, k
i

GMRES()k
o

, k
i

GMRES()k
o

, k
i

GMRES()k
o

, k
i

GMRES()k
o

, k
i

Discretization
Spacing

h

2h

4h

Tuesday, October 25, 2016

New way to organize FWI Software

23

Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver

Tuesday, October 25, 2016

PDEfunc

24

Main	workhorse	function
For	each	source	index

• solve	the	Helmholtz	equation	-	don’t	care	how

• use	solution	to	compute	objective	+	gradient,	demigration/
migration,	hessian/GN	hessian	matrix	vector	product	-	whatever	
the	user	requests

Serial	code,	implicitly	multithreaded

Tuesday, October 25, 2016

Excerpt from PDEfunc

25

Uk = Hk \ Qk_i;
switch func
 case OBJ
 [phi,dphi] = misfit(Pr*Uk,Dobs(:,data_idx),current_src_idx,freq_idx);
 f = f + phi;
 if nargout >= 2

 Vk = Hk' \ (-Pr'* dphi);
 g = g + sum(real(conj(Uk) .* (dH'*Vk)),2);
 end

 case FORW_MODEL
 output(:,data_idx) = Pr*Uk;

 case JACOB_FORW
 dUk = Hk\(dHdm*(-Uk));
 output(:,data_idx) = Pr*dUk;

 case JACOB_ADJ
 Vk = Hk'\(-Pr'* input(:,data_idx));
 output = output + sum(real(conj(Uk) .* (dH'*Vk)),2);
end

Tuesday, October 25, 2016

PDEfunc

Extensions	to	Wave-equation	Reconstruction	Inversion

Standard	FWI

26

min
m

1

2
kPru(m)� dk22

s.t.H(m)u(m) = q

van	Leeuwen	and	Herrmann,“Miogaong	local	minima	in	full-waveform	inversion	by	expanding	the	search	space	,	Geophysical	Journal	Internaoonal	(2013)

Tuesday, October 25, 2016

PDEfunc

Extensions	to	Wave-equation	Reconstruction	Inversion

27

min
m

1

2
kPru(m)� dk22 +

�

2
kH(m)u(m)� qk22

u(m) = argmin
u

����

Pr

�H(m)

�
u�

d
�q

�����
2

van	Leeuwen	and	Herrmann,“Miogaong	local	minima	in	full-waveform	inversion	by	expanding	the	search	space	,	Geophysical	Journal	Internaoonal	(2013)

Tuesday, October 25, 2016

PDEfunc

Extensions	to	2.5D	FWI
• When	the	velocity	is	y-invariant

• After	a	Fourier	transform	in	y-,	the	Helmholtz	equation	reads	as

28

Song	and	Williamson,“Frequency-domain	acousoc-wave	modeling	and	inversion	of	crosshole	data:	Part	I-2.5-D	modeling	method.”	Geophysics	(1995)

v(x, y, z) = h(x, z)

(@2
x

+ @

2
z

+ !

2
h(x, z)� k

2
y

)u
ky (x, z) = S(!)�(x� x

s

)�(z � z

s

)

Tuesday, October 25, 2016

PDEfunc

Extensions	to	2.5D	FWI
• we	can	reconstruct	the	3D	wavefield																								as

29

Song	and	Williamson,“Frequency-domain	acousoc-wave	modeling	and	inversion	of	crosshole	data:	Part	I-2.5-D	modeling	method.”	Geophysics	(1995)

u(x, y, z)

u(x, y, z) =

1

⇡

Z knyq

0
ũky (x, z) cos(ky(y � ys))dky

=

NX

j=1

wjukj
y
(x, z)

Tuesday, October 25, 2016

PDEfunc

Extensions	to	2.5D	FWI
• weighted	sum	structure	of	the	wavefield
->	weighted	sum	structure	for	gradient,	hessian,	etc.

• correct	3D	physics	without	full	3D	costs

30

Song	and	Williamson,“Frequency-domain	acousoc-wave	modeling	and	inversion	of	crosshole	data:	Part	I-2.5-D	modeling	method.”	Geophysics	(1995)

Tuesday, October 25, 2016

2.5D Modeling

31

0 200 400 600 800 1000 1200 1400 1600 1800 2000
x [m]

-200

-150

-100

-50

0

50

100
Real part, 2.5D forward modelled data

Greens function
2.5D wavefield

0 200 400 600 800 1000 1200 1400 1600 1800 2000
x [m]

-150

-100

-50

0

50

100

150
Imaginary part, 2.5D forward modelled data

Greens function
2.5D wavefield

Tuesday, October 25, 2016

New way to organize FWI Software

32

Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

PDEfunc_dist PDE-related	quantities
Parallel	version

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver

Tuesday, October 25, 2016

Separable objective function

33

fI(m) =
1

2|I|
X

i2I

kPrH(m)�1qi � dik22

=
1

2|I|
X

i2I

fi(m)

The	objective	function	is	separable	over	shots/frequencies
-	distribute	indices	to	parallel	workers

Objective	separable	->	gradient,	GN	Hessian,	Hessian	are	separable

PDEfunc_dist	does	no	computation,	just	parallel	distribution	+	summation
				-	separate	computation	from	parallelization
	-	easiest	component	to	‘swap	out’	with	your	own	parallelization	scheme

Tuesday, October 25, 2016

Data volume

34

n
xrec

n
yrec

n
xsrc

n
ysrc

! = !1

n
xsrc

n
ysrc

! = !2 . . . ! = !nf

n
xsrc

n
ysrc

Tuesday, October 25, 2016

New way to organize FWI Software

35

Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

PDEfunc_dist PDE-related	quantities
Parallel	version

oppDF oppHGN oppHF

Forward	modeling Migration/Demigration Gauss-Newton	Hessian Full	Hessian

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver

Tuesday, October 25, 2016

New way to organize FWI Software

Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

PDEfunc_dist PDE-related	quantities
Parallel	version

misfit_setup FWI	objective	setup

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver

Tuesday, October 25, 2016

misfit_setup

37

Constructs	function	handle	for	objective
• velocity	subsampling
• frequency	slice	distribution

Batch	mode	interface	to	the	objective
• stochastic	inversion	algorithm	can	specify	which	source	indices	to	
use	

Fancy	wrapper	around	PDEfunc_dist

Tuesday, October 25, 2016

PDEopts

Options	for	specifying
• PDE	stencil
• PML	width/layout
• preconditioner
• source/receiver	interpolation
• source	estimation
• ...

38
Tuesday, October 25, 2016

Taylor error test

39

10 -5 10 -4 10 -3 10 -2 10 -1 10 0

h

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

Ta
yl

or
 e

rro
r

Zeroth order
First order
Second order
O(h)
O(h2)
O(h3)

f(m+ h�m)� f(m) = O(h)

f(m+ h�m)� f(m)� hrf(m)T �m = O(h2)

f(m+ h�m)� f(m)� hrf(m)T �m� h2

2
�mTr2f(m)�m = O(h3)

Tuesday, October 25, 2016

Adjoint Test

40

Relative Difference

Helmholtz system
matrix

Jacobian

Hessian

hAx, yi hx,AH
yi

1.903020+

2.087502i · 101
1.903020+

2.087502i · 101
1.51 · 10�15

�6.204229 · 10�2 �6.204229 · 10�2 6.8525 · 10�10

7.9767 · 10�11�5.842717 · 10�3�5.842717 · 10�3

Tuesday, October 25, 2016

41

Results

Tuesday, October 25, 2016

Algorithm

42

								-	discrete	model	vector
																				-	point-wise	model	bounds	(water	layer	+	constant	min/max	velocities)

																																																																											-	per-shot	misfit	function

								-	receiver	restriction	operator
																																-	discrete	Helmholtz	system	for	shot	
								-	measured	data	for	shot	

min
m

1

Ns

NsX

i=1

fi(m)

s.t. mL m mU

m
mL,mU

fi(m) =
1

2
kPrH(m)�1qi � dik22

Pr

H(m)ui = qi i
di

Tuesday, October 25, 2016

Algorithm

43

min
m

1

Ns

NsX

i=1

fi(m)

s.t. mL m mU

We	have	too	many	shots	to	process	at	once
-	Can	process				shots	at	a	time	when	we	have					Matlab	workers

Typically	

p p

Ns � p

Tuesday, October 25, 2016

Algorithm

44

At	the					th	iteration,	randomly	draw	a	subset	of	sources																																								with	

Approximately	solve	the	above	problem	with	constrained	LBFGS	or	spectral	projected	
gradient	
	
Repeat	for						iterations

mk = argmin
m

1

|Ik|
X

i2Ik

fi(m)

s.t. mL m mU

Schmidt,	et.	al.,	“Opomizing	Costly	Funcoons	with	Simple	Constraints:	A	Limited-Memory	Projected	Quasi-Newton	Algorithm”,	2009

k Ik ⇢ {1, . . . , Ns} |Ik| = p

T

Tuesday, October 25, 2016

Algorithm

45

Inner	subproblem
• solved	with							function	evaluations	
• each	subproblem	is	equivalent	to	one	pass	over	the	full	data

We	use	three	outer	iterations	
• equivalent	to	three	gradient	steps	with	all	the	shots

Ns
p

Tuesday, October 25, 2016

46

3D FWI Example

Overthrust	model
• 20	km	x	20	km	x	4.6	km	-	50	m	spacing,	500m	water	layer

• 50	x	50	sources,	200m	spacing	-	2500	shots

• 401	x	401	receivers,	50m	spacing

• 3Hz	-	6Hz	frequency	range,	single	freq.	inverted	at	a	time

Tuesday, October 25, 2016

Computational Environment

SENAI	Yemoja	cluster
• 100	nodes,	128	GB	RAM	each,	20-core	processors

• 400	Parallel	Matlab	workers	(4	per	node),	Helmholtz	MVP	uses	5	
threads	-	full	core	utilization

47
Tuesday, October 25, 2016

z=1000m slice

48

Initial	modelTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=1000m slice

49

Stochastic	LBFGSTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=2000m slice

50

Initial	modelTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=2000m slice

51

Stochastic	LBFGSTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

x=12.5km slice

52

Initial	modelTrue	model

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

x=12.5km slice

53

True	model Stochastic	LBFGS

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

x=17.5km slice

54

Initial	modelTrue	model

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

x=17.5km slice

55

True	model

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Stochastic	LBFGS

y [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

y=5km slice

56

Initial	modelTrue	model

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

y=5km slice

57

True	model Stochastic	LBFGS

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

y=10km slice

58

Initial	modelTrue	model

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

y=10km slice

59

True	model

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Stochastic	LBFGS

x [km]
0 5 10 15 20

z
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016

3D Overthrust Model

60

Same	model	as	before,	no	water	layer	(SEG	abstract	results)

3Hz	-	8Hz,	inverted	one	frequency	at	a	time

Compare	the	stochastic	approach	to	the	full-data	approach	
(equivalent	#	of	PDEs	solved)

Tuesday, October 25, 2016

z=500m slice

61

Stochastic	LBFGSTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=500m slice

62

Full	dataTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=1000m slice

63

Initial	ModelTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=1000m slice

64

Stochastic	LBFGSTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

z=1000m slice

65

Full	dataTrue	model

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Tuesday, October 25, 2016

y=10000m slice

66

Initial	modelTrue	model

x [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

x [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

Tuesday, October 25, 2016

y=10000m slice

67

Stochastic	LBFGSTrue	model

x [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

x [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

Tuesday, October 25, 2016

y=10000m slice

68

Full	dataTrue	model

x [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

x [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

Tuesday, October 25, 2016

Summary

Performance	and	correctness	don’t	have	to	be	mutually	exclusive
• Design	software	in	a	modular,	hierarchical	way	yields	benefits	of	
both

Modularity	->	flexibility
• Very	easy	to	swap	out	modules	(PDE	discretizations,	
preconditioners)	without	changing	code

69
Tuesday, October 25, 2016

Summary

Modularity	->	Easier	to	test
• Easier	to	test	->	easier	to	get	right

We	can	design	code	that	is	demonstrably	correct
• Reduce	scope	of	potential	problems	in	FWI

70
Tuesday, October 25, 2016

Summary

Right	abstractions	for	FWI	->
• ease	of	use
• computationally	efficient
• flexible
• easy	to	extend,	understand,	optimize
• can	prototype	algorithms	in	2D,	run	immediately	in	3D	

71
Tuesday, October 25, 2016

Acknowledgements

This	research	was	carried	out	as	part	of	the	SINBAD	project	with	the	
support	of	the	member	organizaoons	of	the	SINBAD	Consoroum.

72
Tuesday, October 25, 2016

The	authors	wish	to	acknowledge	the	SENAI	CIMATEC	Supercompuong	
Center	for	Industrial	Innovaoon,	with	support	from	BG	Brasil,	Shell,	and	
the	Brazilian	Authority	for	Oil,	Gas	and	Biofuels	(ANP),	for	the	provision	
and	operaoon	of	computaoonal	facilioes	and	the	commitment	to	invest	
in	Research	&	Development.

73

Acknowledgements

Tuesday, October 25, 2016

74

Thank	you	for	your	attention

Tuesday, October 25, 2016

