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3D Full Waveform Inversion

Complicated	process
• computationally	intensive

• requires	lots	of	memory,	time

• large	amount	of	programmer	effort	to	get	things	fast

• often	speed	is	the	trade	off	for	correctness
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3D Full Waveform Inversion

Industry	codebases,	while	fast
• are	inflexible	-	hard	to	integrate	new	changes

• are	incorrect	-	no	‘true	derivatives’	of	the	underlying	modelling	
code

• are	poorly	maintained	-	a	new	hire	will	have	no	idea	what’s	going	
on
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3D Full Waveform Inversion

As	a	result
• codes	are	disconnected	from	mathematical	underpinnings

• bugs	are	hard	to	diagnose

• difficult	to	incorporate	new	ideas	from	academia,	research	labs	in	
to	production-level	codes
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Software organization

Software	hierarchy	manages	complexity
• human	brains	have	very	limited	working	memory

• if	a	particular	part	of	a	program	only	has	one	function,	people	
using/debugging	it	only	have	to	think	about	that	one	function

• if	software	is	easier	to	reason	about	->	it’s	easier	to	work	with,	
easier	to	test	
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Software organization

Software	hierarchy	manages	complexity
• we	don’t	have	to	sacrifice	performance	

• lowest	level	operations	implemented	in	C	w/multithreading

• hiding	irrelevant	details	at	each	level
• higher	level	functions	don’t	have	any	idea	about	C/fortran/that	gross	
stuff
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Software organization

Anything	that	we	do	that	isn’t	solving	PDEs	is	essentially	
irrelevant,	computation	time-wise
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Software organization

Anything	that	we	do	that	isn’t	solving	PDEs	is	essentially	
irrelevant,	computation	time-wise

• advantageous	for	software	design	->	any	overhead	introduced	is	
negligible	compared	to	solving	PDEs

• if	a	single	wavefield	can	be	stored	in	RAM	-	true	for	low	frequency	
time	harmonic	FWI
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Software organization

PDEs	are	the	computational	bottleneck
• design	our	software	for	maximum	ease	of	use	+	“plug	and	play”	
components

• speedups	made	to	solving	PDEs	propagate	to	whole	framework
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FWI Problem
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								-	discrete	model	vector
								-	number	of	shots																																																																										
								-	receiver	restriction	operator
																																-	monochromatic	Helmholtz	system	for	shot	
								-	measured	data	for	shot	
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New way to organize FWI Software
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Modeling	matrix	:
multiplication/divisionopAbstractMatrix
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opAbstractMatrix
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A	SPOT	operator
• linear	operator	class	-	behaves	like	a	matrix
• knows	how	to	multiply,	divide	itself
• can	handle	matrix-free	operations	or	form	sparse	matrix	for	2D	
problems

Extensions
• Kaczmarz	sweeps
• Jacobi	iterations
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opAbstractMatrix

Particular	matrix-vector	products	specified	at	construction

discrete_helmholtz	-	constructs	Helmholtz	operator	with	
particular	parameters

• can	swap	between	stencils
• construct	multigrid	preconditioner
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Excerpt from discrete_helmholtz
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    wn = param2wavenum(v_pml,freq,model.unit);    
    switch scheme
      case PDEopts.HELM3D_STD7
        Hmvp = FuncObj(@helm3d_7pt_mvp_mex,{vec(wn),vec(dt),vec(nt),npml,freq,[],[]});
        jacobi = FuncObj(@helm3d_7pt_jacobi_mex,{vec(wn),vec(dt),vec(nt),npml,freq,[],[],[],[]});
        kacz_sweep = [];
      case PDEopts.HELM3D_OPERTO27              
        Hmvp = FuncObj(@helm3d_operto27_mvp,{wn,dt,nt,npml,[],n_threads,[],false});        
        jacobi = [];
        kacz_sweep = FuncObj(@helm3d_operto27_kaczswp,{wn,dt,nt,npml,[],[],[],[],[]});        
        if nargout >= 3
            [~,wn] = param2wavenum(v_pml,freq,model.unit);
            dHmvp = FuncObj(@helm3d_operto27_mvp,{wn,dt,nt,npml,[],n_threads,[],true});
            [~,~,wn] = param2wavenum(v_pml,freq,model.unit);
            ddHmvp = FuncObj(@helm3d_operto27_mvp,{wn,dt,nt,npml,[],n_threads,[],true});
        end
    end
    helm_params = struct;
    helm_params.multiply = Hmvp;
    helm_params.jacobi = jacobi;
    helm_params.kacz_sweep = kacz_sweep;
    helm_params.N = prod(nt);
    helm_params.iscomplex = true;
    H = opAbstractMatrix(mat_mode,helm_params,opts.solve_opts);
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New way to organize FWI Software
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Modeling	matrix	:
multiplication/divisionopAbstractMatrixC-based	MVPMultithreaded	

Mat-vec	multiply
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C-based Matrix Vector Product
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Implementation	of	27-pt	compact	stencil	[1]

Multi-threaded	along	the	z-coordinate	with	openMP

Forward,	adjoint	modes

Text[1]	Operto	et.	al.	“3D	finite-difference	frequency-domain	modeling	of	visco-acoustic	wave	
propagation	using	a	massively	parallel	direct	solver:	A	feasibility	study”,	Geophysics	2007
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Helmholtz matrix

17

In	2D,	we	can	afford	to	use	explicit	sparse	matrices	+	fast	direct	
solvers

• implementation	of	[1]

Explicit	matrices	VS	implicit	matrices	is	opaque	to	the	user
• interface	remains	the	same	

Text
[1]	Chen,	et.	al.	“An	Optimal	9-Point	Finite	Difference	Scheme	For	The	Helmholtz	Equation	With	PML.”,	2013
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C-based Matrix Vector Product

Matlab	Compiler
• write	stencil-based	code	in	Matlab	->	C	code	with	openMP	
multithreading

• nearly	as	fast	as	native	C	code,	much	easier	to	develop

18
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New way to organize FWI Software
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Modeling	matrix	:
multiplication/divisionopAbstractMatrixC-based	MVPMultithreaded	

Mat-vec	multiply

Linearsolve
Abstract	linear

solver
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Linearsolve

20

Abstract	interface	for	“Solve	Ax	=	b	with	a	specified	method”
• encourages	code	reuse	-	smoothers	for	multigrid,	preconditioner	
applications

• calls	the	specified	method	(GMRES,CG,	etc.)	with	the	prescribed	
number	of	iterations,	right	hand	side,	initial	guess,	tolerance,	and	
preconditioner
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LinSolveOpts

Object	for	storing
• linear	solver	method
• maximum	outer	iterations
• maximum	inner	iterations	(for	some	solvers)
• tolerance
• preconditioner

As	well	as	default	options	for	these
• Solvers:	CG,	FGMRES,	LU,	etc.
• Preconditioners:	ML-GMRES,	Shifted	Laplacian,	etc.
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Multilevel-GMRES
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New way to organize FWI Software
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Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver
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PDEfunc
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Main	workhorse	function
For	each	source	index

• solve	the	Helmholtz	equation	-	don’t	care	how

• use	solution	to	compute	objective	+	gradient,	demigration/
migration,	hessian/GN	hessian	matrix	vector	product	-	whatever	
the	user	requests

Serial	code,	implicitly	multithreaded
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Excerpt from PDEfunc
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Uk = Hk \ Qk_i;
switch func
   case OBJ 
      [phi,dphi] = misfit(Pr*Uk,Dobs(:,data_idx),current_src_idx,freq_idx);                
      f = f + phi;
      if nargout >= 2

    Vk = Hk' \ ( -Pr'* dphi);
          g = g + sum(real(conj(Uk) .* (dH'*Vk)),2);
      end

    case FORW_MODEL
      output(:,data_idx) = Pr*Uk;

   case JACOB_FORW
      dUk = Hk\(dHdm*(-Uk));
      output(:,data_idx) = Pr*dUk;

   case JACOB_ADJ
      Vk = Hk'\( -Pr'* input(:,data_idx) );
      output = output + sum(real(conj(Uk) .* (dH'*Vk)),2);
end
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PDEfunc

Extensions	to	Wave-equation	Reconstruction	Inversion

Standard	FWI

26

min
m

1

2
kPru(m)� dk22

s.t.H(m)u(m) = q

van	Leeuwen	and	Herrmann,“Miogaong	local	minima	in	full-waveform	inversion	by	expanding	the	search	space	,	Geophysical	Journal	Internaoonal	(2013)
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PDEfunc

Extensions	to	Wave-equation	Reconstruction	Inversion
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van	Leeuwen	and	Herrmann,“Miogaong	local	minima	in	full-waveform	inversion	by	expanding	the	search	space	,	Geophysical	Journal	Internaoonal	(2013)

Tuesday, October 25, 2016



PDEfunc

Extensions	to	2.5D	FWI
• When	the	velocity	is	y-invariant

• After	a	Fourier	transform	in	y-,	the	Helmholtz	equation	reads	as

28

Song	and	Williamson,“Frequency-domain	acousoc-wave	modeling	and	inversion	of	crosshole	data:	Part	I-2.5-D	modeling	method.”	Geophysics	(1995)
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PDEfunc

Extensions	to	2.5D	FWI
• we	can	reconstruct	the	3D	wavefield																								as

29

Song	and	Williamson,“Frequency-domain	acousoc-wave	modeling	and	inversion	of	crosshole	data:	Part	I-2.5-D	modeling	method.”	Geophysics	(1995)
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PDEfunc

Extensions	to	2.5D	FWI
• weighted	sum	structure	of	the	wavefield
->	weighted	sum	structure	for	gradient,	hessian,	etc.

• correct	3D	physics	without	full	3D	costs

30

Song	and	Williamson,“Frequency-domain	acousoc-wave	modeling	and	inversion	of	crosshole	data:	Part	I-2.5-D	modeling	method.”	Geophysics	(1995)
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2.5D Modeling

31
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New way to organize FWI Software
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Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

PDEfunc_dist PDE-related	quantities
Parallel	version

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver
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Separable objective function
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fI(m) =
1

2|I|
X

i2I

kPrH(m)�1qi � dik22

=
1

2|I|
X

i2I

fi(m)

The	objective	function	is	separable	over	shots/frequencies
-	distribute	indices	to	parallel	workers

Objective	separable	->	gradient,	GN	Hessian,	Hessian	are	separable

PDEfunc_dist	does	no	computation,	just	parallel	distribution	+	summation
				-	separate	computation	from	parallelization
	-	easiest	component	to	‘swap	out’	with	your	own	parallelization	scheme
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Data volume

34
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New way to organize FWI Software
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Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

PDEfunc_dist PDE-related	quantities
Parallel	version

oppDF oppHGN oppHF

Forward	modeling Migration/Demigration Gauss-Newton	Hessian Full	Hessian

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver
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New way to organize FWI Software

Modeling	matrix	:
multiplication/divisionopAbstractMatrix

PDEfunc PDE-related	quantities
Serial	version

PDEfunc_dist PDE-related	quantities
Parallel	version

misfit_setup FWI	objective	setup

C-based	MVPMultithreaded	
Mat-vec	multiply

Linearsolve
Abstract	linear

solver
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misfit_setup
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Constructs	function	handle	for	objective
• velocity	subsampling
• frequency	slice	distribution

Batch	mode	interface	to	the	objective
• stochastic	inversion	algorithm	can	specify	which	source	indices	to	
use	

Fancy	wrapper	around	PDEfunc_dist
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PDEopts

Options	for	specifying
• PDE	stencil
• PML	width/layout
• preconditioner
• source/receiver	interpolation
• source	estimation
• ...

38
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Taylor error test
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Adjoint Test
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Relative Difference

Helmholtz system
matrix

Jacobian

Hessian

hAx, yi hx,AH
yi

1.903020+

2.087502i · 101
1.903020+

2.087502i · 101
1.51 · 10�15

�6.204229 · 10�2 �6.204229 · 10�2 6.8525 · 10�10

7.9767 · 10�11�5.842717 · 10�3�5.842717 · 10�3
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Results
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Algorithm
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								-	discrete	model	vector
																				-	point-wise	model	bounds	(water	layer	+	constant	min/max	velocities)

																																																																											-	per-shot	misfit	function

								-	receiver	restriction	operator
																																-	discrete	Helmholtz	system	for	shot	
								-	measured	data	for	shot	

min
m

1

Ns

NsX

i=1

fi(m)

s.t. mL  m  mU

m
mL,mU

fi(m) =
1

2
kPrH(m)�1qi � dik22

Pr

H(m)ui = qi i
di
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Algorithm

43

min
m

1

Ns

NsX

i=1

fi(m)

s.t. mL  m  mU

We	have	too	many	shots	to	process	at	once
-	Can	process				shots	at	a	time	when	we	have					Matlab	workers

Typically	

p p

Ns � p
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Algorithm
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At	the					th	iteration,	randomly	draw	a	subset	of	sources																																								with	

Approximately	solve	the	above	problem	with	constrained	LBFGS	or	spectral	projected	
gradient	
	
Repeat	for						iterations

mk = argmin
m

1

|Ik|
X

i2Ik

fi(m)

s.t. mL  m  mU

Schmidt,	et.	al.,	“Opomizing	Costly	Funcoons	with	Simple	Constraints:	A	Limited-Memory	Projected	Quasi-Newton	Algorithm”,	2009

k Ik ⇢ {1, . . . , Ns} |Ik| = p

T
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Algorithm
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Inner	subproblem
• solved	with							function	evaluations	
• each	subproblem	is	equivalent	to	one	pass	over	the	full	data

We	use	three	outer	iterations	
• equivalent	to	three	gradient	steps	with	all	the	shots

Ns
p
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3D FWI Example

Overthrust	model
• 20	km	x	20	km	x	4.6	km	-	50	m	spacing,	500m	water	layer

• 50	x	50	sources,	200m	spacing	-	2500	shots

• 401	x	401	receivers,	50m	spacing

• 3Hz	-	6Hz	frequency	range,	single	freq.	inverted	at	a	time
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Computational Environment

SENAI	Yemoja	cluster
• 100	nodes,	128	GB	RAM	each,	20-core	processors

• 400	Parallel	Matlab	workers	(4	per	node),	Helmholtz	MVP	uses	5	
threads	-	full	core	utilization

47
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z=1000m slice
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z=1000m slice
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Stochastic	LBFGSTrue	model
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z=2000m slice
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z=2000m slice
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Stochastic	LBFGSTrue	model
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x=12.5km slice

52

Initial	modelTrue	model

y [km]
0 5 10 15 20

z 
[k

m
]

0

1.2

2.3

3.5

4.6

y [km]
0 5 10 15 20

z 
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016



x=12.5km slice
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True	model Stochastic	LBFGS
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x=17.5km slice
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x=17.5km slice
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y=5km slice
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y=5km slice
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True	model Stochastic	LBFGS
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y=10km slice
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y=10km slice

59

True	model

x [km]
0 5 10 15 20

z 
[k

m
]

0

1.2

2.3

3.5

4.6

Stochastic	LBFGS

x [km]
0 5 10 15 20

z 
[k

m
]

0

1.2

2.3

3.5

4.6

Tuesday, October 25, 2016



3D Overthrust Model
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Same	model	as	before,	no	water	layer	(SEG	abstract	results)

3Hz	-	8Hz,	inverted	one	frequency	at	a	time

Compare	the	stochastic	approach	to	the	full-data	approach	
(equivalent	#	of	PDEs	solved)
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z=500m slice
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z=500m slice
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z=1000m slice
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z=1000m slice
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Stochastic	LBFGSTrue	model
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z=1000m slice
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Full	dataTrue	model
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y=10000m slice
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Initial	modelTrue	model
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y=10000m slice
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Stochastic	LBFGSTrue	model

x [km]
0 5 10 15 20

z 
[k

m
]

0

1.1

2.3

3.5

4.6

x [km]
0 5 10 15 20

z 
[k

m
]

0

1.1

2.3

3.5

4.6

Tuesday, October 25, 2016



y=10000m slice
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Full	dataTrue	model
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Summary

Performance	and	correctness	don’t	have	to	be	mutually	exclusive
• Design	software	in	a	modular,	hierarchical	way	yields	benefits	of	
both

Modularity	->	flexibility
• Very	easy	to	swap	out	modules	(PDE	discretizations,	
preconditioners)	without	changing	code
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Summary

Modularity	->	Easier	to	test
• Easier	to	test	->	easier	to	get	right

We	can	design	code	that	is	demonstrably	correct
• Reduce	scope	of	potential	problems	in	FWI
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Summary

Right	abstractions	for	FWI	->
• ease	of	use
• computationally	efficient
• flexible
• easy	to	extend,	understand,	optimize
• can	prototype	algorithms	in	2D,	run	immediately	in	3D	
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