Composite Convex Smooth Optimization with Seismic Data Processing Applications
 \author{

}

Composite
Seismic D
Curt Da Silva號

路

University of British Columbia
－
\qquad
\qquad
University of British Columbia

\qquad
－SLIM $4-1$
University of Brit

－SLIM $\frac{1}{}$ University of B
\square

\square
.
\qquad
$-2+2$
\qquad
\square －
\qquad
\qquad

\author{

}
（
 \square
\square

\qquad

\qquad

\qquad

Optimization problem

We'll look at techniques for solving

$$
\min _{x} h(g(x))
$$

where
$h(x)$ - is convex, non-smooth, has an easy projection $g(x)$ - is a smooth mapping

Applications - Robust Tensor Completion

$$
\min _{x} \overbrace{\|\underbrace{A \phi(x)-b}_{g(x)}\|_{1}}^{h(\cdot)=\|\cdot\|_{1}}
$$

\mathcal{A} - subsampling operator
$\phi(x)$ - mapping from tensor parameters -> full tensor
b - measured data contaminated by impulsive noise

Robust Tensor Completion 75\% Missing Receivers

True Data

Input Data - SNR OdB

Optimization problem

Back to this problem

$$
\min _{x} h(g(x))
$$

where
$h(x)$ - is convex, non-smooth, has an easy projection $g(x)$ - is a smooth mapping

Optimization problem

Standard optimization trick, introduce a new variable

$$
\min _{x, y} h(y)
$$

such that $g(x)=y$
Problem: This problem is hard to solve (nonlinear programming with a non-smooth objective)

Optimization problem

Solution: Look at the associated value function

$$
\begin{array}{rlrl}
v(\tau)= & \text { minimize }_{x, y} & \frac{1}{2}\|g(x)-y\|_{2}^{2} \\
& \text { such that } & & h(y) \leq \tau
\end{array}
$$

The smallest τ for which $v(\tau)=0$ is the optimal value of the original problem (SPGL1 trick)

Optimization problem

If we can compute $v(\tau)$ for any τ, we can use the secant method to update τ and find a root $v(\tau)=0$

$$
\tau_{k+1}=\tau_{k}-v\left(\tau_{k}\right) \frac{\tau_{k}-\tau_{k-1}}{v\left(\tau_{k}\right)-v\left(\tau_{k-1}\right)}
$$

Optimization problem

If $h(x)$ is a gauge (think: nonsmooth norm like $\|\cdot\|_{1}$), we can upgrade the secant method to Newton's method with

$$
v^{\prime}(\tau)=-h^{\circ}(z-g(x))
$$

$h^{\circ}(y)$ is the polar of h (think dual norm, like $\|\cdot\|_{\infty}$)

Computing the value function

How to solve this problem?

$$
\begin{array}{rlrl}
v(\tau)= & \text { minimize }_{x, y} & \frac{1}{2}\|g(x)-y\|_{2}^{2} \\
& \text { such that } & & h(y) \leq \tau
\end{array}
$$

Objective function is smooth, projection is simple - might converge slowly

Computing the value function

We'll use variable projection - for each fixed x, define

$$
\begin{aligned}
y(x)= & \arg \min _{y} \frac{1}{2}\|g(x)-y\|_{2}^{2} \\
& \text { such that } h(y) \leq \tau
\end{aligned}
$$

Simple projection operation

Computing the value function

Plugging this expression back in yields

$$
v(\tau)=\arg \min _{x} \frac{1}{2}\|g(x)-y(x)\|_{2}^{2}
$$

Single-variable, unconstrained optimization
Can be tackled with SD, LBFGS, etc.

Computing the value function

Because of variable projection, derivatives with respect to x don't change

- minimal amount of changes to existing code

If you code can do non-linear least squares, it can handle convexcomposite optimization

Synthesis VS Analysis Interlude

Synthesis-based reconstruction

Synthesis-based reconstruction

Synthesis-based reconstruction

Synthesis-based reconstruction

Synthesis-based reconstruction

This is the so-called synthesis model of signal reconstruction

Synthesis-based reconstruction

This is the so-called synthesis model of signal reconstruction

Synthesis-based reconstruction

This is the so-called synthesis model of signal reconstruction

Synthesis-based reconstruction

Standard sparsity-promoting interpolation

$$
\begin{gathered}
\min _{z}\|z\|_{1} \\
\text { such that } R M z=b
\end{gathered}
$$

R - Trace restriction operator
M - Measurement operator (adjoint curvelet transform)
b-Measured data
z-Signal coefficients

Analysis-based reconstruction

Ω
ω_{1}
ω_{2}
ω_{3}
ω_{4}
ω_{5}
ω_{6}
ω_{7}
ω_{8}
ω_{9}
ω_{10}
ω_{11}
ω_{12}
ω_{13}

Analysis-based reconstruction

ω_{1}
ω_{2}
ω_{3}
ω_{4}
ω_{5}
ω_{6}
ω_{7}
ω_{8}
ω_{9}
ω_{10}

Analysis-based reconstruction

$$
\begin{gathered}
\min _{x}\|\Omega x\|_{p} \\
\text { s.t. } R x=b
\end{gathered}
$$

R - Trace restriction operator
Ω-Cosparsity Dictionary (Curvelet Transform)
b - Measured data
x - Signal
p-0 or 1

Synthesis VS Analysis

Note that synthesis \neq analysis unless M, Ω are orthonormal bases and $M=\Omega^{-1}$

Synthesis : building up a signal through a small selection of atoms

Analysis : carve away areas of Euclidean space where a signal cannot live (i.e., orthogonal to a large number of atoms)

Example: Analysis-based interpolation

$$
\begin{gathered}
\min _{x}\|\Omega x\|_{1} \\
\text { such that } A x=b \\
v(\tau)=\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{1}{2}\|\Omega x-y(x)\|_{2}^{2} \\
y(x)=\arg \min _{y} \frac{1}{2}\|\Omega x-y\|_{2}^{2} \\
\operatorname{such} \text { that }\|y\|_{1} \leq \tau
\end{gathered}
$$

Matlab code - objective evaluation

```
function [f,g] = cosparsity_obj(A,b,x,Omega,tau)
    r = A*x-b;
    z = Omega*x;
    y = NormL1_project(z,tau);
    z = z-y;
    f = 0.5*norm(r)^2 + 0.5*norm(z)^2;
    if nargout >=2
        g = A'*r + Omega'*z;
    end
end
```


Matlab code - outer loop

```
P = @(x,tau) NormL1_project(x,tau);
obj = @(x,tau) cosparsity obj(A,b,x,Om,tau);
[x,f1] = minFunc(@(x) obj(x,tau1),x,inner_opts);
for i=1:ntau_updates
    c = Om*x;
    df = -norm(P(c,taul)-c,'inf');
    taul = taul - f1/df;
    [x,f1] = minFunc(@(x) obj(x,tau1),x,inner_opts);
end
```


Example: Analysis-based interpolation

$$
\begin{gathered}
\min _{x}\|\Omega x\|_{0} \\
\text { such that } A x=b \\
v(\tau)=\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{1}{2}\|\Omega x-y(x)\|_{2}^{2} \\
y(x)=\arg \min _{y} \frac{1}{2}\|\Omega x-y\|_{2}^{2} \\
\text { such that }\|y\|_{0} \leq \tau
\end{gathered}
$$

Note that τ is now integer-valued - need to round secant method update

Compare to GAP method

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$

$$
\Lambda=\{1, \ldots, n\}
$$

1. Projection: compute $z=\Omega x_{k}$
2. Find the largest elements of z
3. Remove the corresponding rows from Λ
4. Update solution estimate

$$
x_{k+1}=\arg \min _{x}\left\|\Omega_{\Lambda} x\right\|_{2} \text { subject to } y=A x
$$

Compare to GAP method

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$

$$
\Lambda=\{1, \ldots, n\}
$$

1. Projection: compute $z=\Omega x_{k}$
2. Find the largest elements of z
3. Remove the corresponding rows from Λ
4. Update solution estimate

$$
x_{k+1}=\arg \min _{x}\left\|\Omega_{\Lambda} x\right\|_{2} \text { subject to } y=A x
$$

Cosparsity VS Sparsity
 50\% Missing sources

True signal

Input Data

Cosparsity VS Sparsity
50% Missing sources

True signal

Synthesis L1 (SPGL1) - SNR 14.9 dB

Cosparsity VS Sparsity
50\% Missing sources

True signal

Analysis L1 (Linearized Bregman) - SNR 14.3 dB

Cosparsity VS Sparsity
50% Missing sources

True signal

Analysis L1 (Ours) - SNR 15.0 dB

Cosparsity VS Sparsity
50% Missing sources

True signal

Analysis LO (Ours) - SNR 23.7 dB

Cosparsity VS Sparsity

True signal

Analysis LO - GAP - SNR 23.4 dB

Cosparsity VS Sparsity 50% Missing sources

Difference - Synthesis L1

Difference - Analysis L1

Cosparsity VS Sparsity 50\% Missing sources

Difference - GAP LO

Difference - Ours LO

L1 Summary

	SNR (dB)	Time (s)
Synthesis (SPGLI)	14.9	112
Analysis (Ours)	15.0	77.2
Linearized Bregman	14.3	188

LO Summary

Ours	SNR (dB)	Time (s)
	23.7	75
GAP	23.4	118

Can be easily extended to handle

- data-side noise
- signal-side constraints

Applications - Robust Tensor Completion

$$
\min _{x}\|\mathcal{A} \phi(x)-b\|_{1}
$$

\mathcal{A} - subsampling operator
$\phi(x)$ - mapping from tensor parameters -> full tensor
b - measured data contaminated by impulsive noise

Example: Robust Tensor Completion

$$
\begin{gathered}
\min _{x}\|\mathcal{A} \phi(x)-b\|_{1} \\
v(\tau)=\min _{x} \frac{1}{2}\|\mathcal{A}(\phi(x))-b-r(x)\|_{2}^{2} \\
r(x)=\arg \min _{r} \frac{1}{2}\|\mathcal{A}(\phi(x))-b-r\|_{2}^{2} \\
\text { s.t. }\|r\|_{1} \leq \tau
\end{gathered}
$$

Example:

BG Data Set

- 68×68 sources on a 150 m grid, 201×201 receivers on a 50 m grid, ocean bottom setup
- 75% receivers decimated randomly
- 5% of remaining receivers corrupted with noise = energy of decimated signal
- Hierarchical Tucker interpolation with previous L1 formulation

Example:

We compare to

- L2 misfit - original HT tensor completion
- Huber misfit - smoothed L1

$$
H_{\delta}(x)= \begin{cases}x^{2} & \text { if }|x| \leq \delta \\ 2 \delta|x|-\delta^{2} & \text { if }|x| \geq \delta\end{cases}
$$

Robust Tensor Completion
 75\% Missing Receivers with 5\% impulsive noise

True Data

Input Data - SNR OdB

Robust Tensor Completion
 75\% Missing Receivers with 5\% impulsive noise

Robust Tensor Completion

75\% Missing Receivers with 5% impulsive noise

Robust Tensor Completion
 75\% Missing Receivers with 5\% impulsive noise

Robust Tensor Completion
 75\% Missing Receivers with 5\% impulsive noise

Difference - L2

Difference-L1

Robust Tensor Completion

	Recovery SNR (dB)	Time (s)
$\ell 2$	7.68	632
$\ell 1$	16.2	1072
Huber - best δ	15.9	1003

Huber performance versus δ

	Recovery SNR (dB)	Time (s)
$5 \cdot 10^{-6}$	13.4	1578
$5 \cdot 10^{-5}$	15.9	1003
$5 \cdot 10^{-4}$	8.32	928

Summary

Solve problems of the form

$$
\min _{x} h(g(x))
$$

with
$h(x)$ - is convex, non-smooth, has an easy projection $g(x)$ - is a smooth mapping

With level set methods (SPGL1 trick) + variable projection

Summary

Applications to seismic data processing

- Cosparsity-based interpolation
- Robust tensor completion

Competitive compared to other existing sparsity-based methods

Future Work

Extensions to non-convex problems

- Full waveform inversion

More seismic examples

- Source localization
- 4D seismic imaging

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

