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Optimization problem

We’ll	look	at	techniques	for	solving		

where
																		-	is	convex,	non-smooth,	has	an	easy	projection
																		-	is	a	smooth	mapping
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min
x

h(g(x))

h(x)

g(x)
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Applications - Robust Tensor Completion

					
					-	subsampling	operator
										-	mapping	from	tensor	parameters	->	full	tensor
			-	measured	data	contaminated	by	impulsive	noise
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A
�(x)

b

min
x

h(·)=k·k1z }| {
kA�(x)� b| {z }

g(x)

k1
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Robust Tensor Completion
75% Missing Receivers
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Optimization problem

Back	to	this	problem

where
																		-	is	convex,	non-smooth,	has	an	easy	projection
																		-	is	a	smooth	mapping

5

min
x

h(g(x))

h(x)

g(x)

Burke,	“Second	order	necessary	and	sufficient	conditions	for	convex	composite	NDO”,	Mathematical	Programming	1987

Tuesday, October 25, 2016



Optimization problem

Standard	optimization	trick,	introduce	a	new	variable	

Problem:	This	problem	is	hard	to	solve	(nonlinear	programming	
with	a	non-smooth	objective)
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min
x,y

h(y)

such that g(x) = y
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Optimization problem

Solution:	Look	at	the	associated	value	function

The	smallest					for	which																					is	the	optimal	value	of	the	
original	problem	(SPGL1	trick)
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v(⌧) =minimize
x,y

1

2
kg(x)� yk22

such that h(y)  ⌧

⌧ v(⌧) = 0

Van	Den	Berg,	Friedlander	“Probing	the	Pareto	frontier	for	basis	pursuit	solutions”,	SIAM	2008
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Optimization problem

If	we	can	compute											for	any				,	we	can	use	the	secant	method	
to	update				and	find	a	root	
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v(⌧) ⌧
⌧ v(⌧) = 0

⌧k+1 = ⌧k � v(⌧k)
⌧k � ⌧k�1

v(⌧k)� v(⌧k�1)

Aravkin	et.	al.	“Level-set	methods	for	convex	optimization”,	2016	preprint
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Optimization problem

If												is	a	gauge	(think:	nonsmooth	norm	like												),	we	can	
upgrade	the	secant	method	to	Newton’s	method	with

													is	the	polar	of						(think	dual	norm,	like													)

9

h(x) k · k1

v

0(⌧) = �h

�(z � g(x))

h�(y) h k · k1

Aravkin,	Burke,	Friedlander	“Variational	properties	of	value	functions”,	SIAM	Optimization	2013
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Computing the value function

How	to	solve	this	problem?

Objective	function	is	smooth,	projection	is	simple
• might	converge	slowly
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v(⌧) =minimize
x,y

1

2
kg(x)� yk22

such that h(y)  ⌧
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Computing the value function

We’ll	use	variable	projection	-	for	each	fixed				,	define

Simple	projection	operation
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x

y(x) = argmin
y

1

2
kg(x)� yk22

such that h(y)  ⌧

Kaufman,	“A	variable	projection	method	for	solving	separable	nonlinear	least	squares	problems”	BIT	Num.	Math,	1975
Aravkin,	Van	Leeuwen,	“Estimating	nuisance	parameters	in	inverse	problems”	Inverse	Problems,	2012
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Computing the value function

Plugging	this	expression	back	in	yields

Single-variable,	unconstrained	optimization
Can	be	tackled	with	SD,	LBFGS,	etc.
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v(⌧) = argmin
x

1

2
kg(x)� y(x)k22
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Computing the value function

Because	of	variable	projection,	derivatives	with	respect	to					don’t	
change

• minimal	amount	of	changes	to	existing	code

If	you	code	can	do	non-linear	least	squares,	it	can	handle	convex-
composite	optimization
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x
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Synthesis	VS	Analysis	Interlude
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Synthesis-based reconstruction
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= z1 + z2 + z3

+ z4 + z5 + z6

+ . . .
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Synthesis-based reconstruction
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Synthesis-based reconstruction
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= z2 + z5

z8+
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Synthesis-based reconstruction
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Synthesis-based reconstruction

19

This	is	the	so-called	synthesis	model	of	signal	reconstruction	

x D z

=
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Synthesis-based reconstruction
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This	is	the	so-called	synthesis	model	of	signal	reconstruction	

x D z

=
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Synthesis-based reconstruction

21

This	is	the	so-called	synthesis	model	of	signal	reconstruction	

x D z

=
Signal	is	only	“allowed”	to	
live	at	these	locations
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Synthesis-based reconstruction

22

Standard	sparsity-promoting	interpolation

			-	Trace	restriction	operator
			-	Measurement	operator	(adjoint	curvelet	transform)
			-	Measured	data
			-	Signal	coefficients

R

M

b

min
z

kzk1

such that RMz = b

z
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Analysis-based reconstruction
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⌦
x

!1
!2
!3
!4
!5
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!7
!8
!9
!10
!11
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!13

=
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Analysis-based reconstruction

24

⌦
x

!1
!2
!3
!4
!5
!6
!7
!8
!9
!10
!11
!12
!13

Signal	is	not	“allowed”	
to	live	in	the	space
spanned	by	these	rows

=
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Analysis-based reconstruction

25

			-	Trace	restriction	operator
			-	Cosparsity	Dictionary	(Curvelet	Transform)
			-	Measured	data
			-	Signal
			-	0	or	1

min
x

k⌦xk
p

s.t.Rx = b

R

b

⌦

x

p
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Synthesis VS Analysis

Note	that	synthesis							analysis	unless													are	orthonormal	
bases	and	

Synthesis	:	building	up	a	signal	through	a	small	selection	of	atoms

Analysis	:	carve	away	areas	of	Euclidean	space	where	a	signal	
cannot	live	(i.e.,	orthogonal	to	a	large	number	of	atoms)
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6= M,⌦
M = ⌦�1
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Example: Analysis-based interpolation

27

min
x

k⌦xk1

such that Ax = b

v(⌧) =min
x

1

2
kAx� bk22 +

1

2
k⌦x� y(x)k22

y(x) = argmin
y

1

2
k⌦x� yk22

such that kyk1  ⌧
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Matlab code - objective evaluation
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function [f,g] = cosparsity_obj(A,b,x,Omega,tau)
    r = A*x-b;
    z = Omega*x;
    y = NormL1_project(z,tau);
    
    z = z-y;
    
    f = 0.5*norm(r)^2 + 0.5*norm(z)^2;
    if nargout >=2
        g = A'*r + Omega'*z;
    end
end
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Matlab code - outer loop
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P = @(x,tau) NormL1_project(x,tau);
obj = @(x,tau) cosparsity_obj(A,b,x,Om,tau);    

  [x,f1] = minFunc(@(x) obj(x,tau1),x,inner_opts);
for i=1:ntau_updates

      c = Om*x;
      df = -norm(P(c,tau1)-c,'inf');
      tau1 = tau1 - f1/df;
      [x,f1] = minFunc(@(x) obj(x,tau1),x,inner_opts);        
  end
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Example: Analysis-based interpolation

30

v(⌧) =min
x

1

2
kAx� bk22 +

1

2
k⌦x� y(x)k22

min
x

k⌦xk0

such thatAx = b

y(x) = argmin
y

1

2
k⌦x� yk22

such that kyk0  ⌧

Note	that						is	now	
integer-valued		-	need	to	
round	secant	method	
update

⌧
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Compare to GAP method

31

Start	with	full	index	set	of	rows	of		

1.	Projection:	compute	
2.	Find	the	largest	elements	of
3.	Remove	the	corresponding	rows	from		
4.	Update	solution	estimate

⌦ 2 Cn⇥d

⇤ = {1, . . . , n}

z = ⌦xk

z
⇤

x

k+1 = argmin

x

k⌦⇤xk2 subject to y = Ax

Nam,	et.	al.,	“The	cosparse	analysis	model	and	algorithms”	(2013)
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Compare to GAP method

32

Start	with	full	index	set	of	rows	of		

1.	Projection:	compute	
2.	Find	the	largest	elements	of
3.	Remove	the	corresponding	rows	from		
4.	Update	solution	estimate

⌦ 2 Cn⇥d

⇤ = {1, . . . , n}

z = ⌦xk

z
⇤

x

k+1 = argmin

x

k⌦⇤xk2 subject to y = Ax

Costly/complicated

Nam,	et.	al.,	“The	cosparse	analysis	model	and	algorithms”	(2013)
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Cosparsity VS Sparsity
50% Missing sources
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Cosparsity VS Sparsity
50% Missing sources
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Cosparsity VS Sparsity
50% Missing sources
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Cai,	Osher,	Shen	-	'Split	Bregman	Methods	and	Frame	Based	Image	Restoration'	(2009)
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Cosparsity VS Sparsity
50% Missing sources
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Cosparsity VS Sparsity
50% Missing sources
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Cosparsity VS Sparsity
50% Missing sources
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Nam,	et.	al.,	“The	cosparse	analysis	model	and	algorithms”	(2013)
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Cosparsity VS Sparsity
50% Missing sources
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Difference	-	Synthesis	L1 Difference	-	Analysis	L1
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Cosparsity VS Sparsity
50% Missing sources
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Difference	-	GAP	L0 Difference	-	Ours	L0
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L1 Summary

41

SNR (dB) Time (s)

Synthesis (SPGL1) 14.9 112

Analysis (Ours) 15.0 77.2

Linearized Bregman 14.3 188
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L0 Summary
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SNR (dB) Time (s)

Ours 23.7 75

GAP 23.4 118
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Extensions
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Can	be	easily	extended	to	handle
• data-side	noise
• signal-side	constraints
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Applications - Robust Tensor Completion

					-	subsampling	operator
										-	mapping	from	tensor	parameters	->	full	tensor
			-	measured	data	contaminated	by	impulsive	noise

44

min
x

kA�(x)� bk1

A
�(x)

b
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Example: Robust Tensor Completion

45

min
x

kA�(x)� bk1

v(⌧) = min
x

1

2
kA(�(x))� b� r(x)k22

r(x) = argmin
r

1

2
kA(�(x))� b� rk22

s.t.krk1  ⌧
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Example: 

46

BG	Data	Set
• 68	x	68	sources	on	a	150m	grid,	201	x	201	receivers	on	a	50m	grid,	
ocean	bottom	setup

• 75%	receivers	decimated	randomly
• 5%	of	remaining	receivers	corrupted	with	noise	=	energy	of	
decimated	signal

• Hierarchical	Tucker	interpolation	with	previous	L1	formulation
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Example: 

47

We	compare	to
• L2	misfit	-	original	HT	tensor	completion
• Huber	misfit	-	smoothed	L1	

-10 -8 -6 -4 -2 0 2 4 6 8 10
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H�(x) =

(
x2 if |x|  �

2�|x|� �2 if |x| � �
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Robust Tensor Completion
75% Missing Receivers with 5% impulsive noise
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Robust Tensor Completion
75% Missing Receivers with 5% impulsive noise
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Robust Tensor Completion
75% Missing Receivers with 5% impulsive noise
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Robust Tensor Completion
75% Missing Receivers with 5% impulsive noise
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True	Data Huber	penalty	-	best	parameter		-	SNR	16.7	dB
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Robust Tensor Completion
75% Missing Receivers with 5% impulsive noise
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Difference	-	L2 Difference	-	L1
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Robust Tensor Completion
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Recovery SNR (dB) Time (s)

7.68 632

16.2 1072

Huber - best 15.9 1003�

`1

`2
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Huber performance versus 
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�

Recovery SNR (dB) Time (s)

13.4 1578

15.9 1003

8.32 928

5 · 10�5

5 · 10�4

5 · 10�6
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Summary

55

Solve	problems	of	the	form	

with	
																	-	is	convex,	non-smooth,	has	an	easy	projection
																	-	is	a	smooth	mapping

With	level	set	methods	(SPGL1	trick)	+	variable	projection

min
x

h(g(x))

h(x)

g(x)
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Summary

Applications	to	seismic	data	processing
• Cosparsity-based	interpolation
• Robust	tensor	completion

Competitive	compared	to	other	existing	sparsity-based	methods
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Future Work

Extensions	to	non-convex	problems	
• Full	waveform	inversion

More	seismic	examples
• Source	localization
• 4D	seismic	imaging
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