Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Composite Convex Smooth Optimization with Seismic Data Processing Applications Curt Da Silva

Tuesday, October 25, 2016

We'll look at techniques for solving

 $\min_{\alpha} h(g(x))$ \mathcal{X}

where

h(x) - is convex, non-smooth, has an easy projection

g(x) - is a smooth mapping

Applications - Robust Te

$$h(\cdot) = \|$$

$$\min_{x} \| A\phi(x)$$

$$g(x)$$

 \mathcal{A} - subsampling operator $\phi(x)$ - mapping from tensor parameters -> full tensor b - measured data contaminated by impulsive noise

ensor Completion $\cdot \|_1$ $-b\|_{1}$

Robust Tensor Completion 75% Missing Receivers

4

Input Data - SNR OdB

Back to this problem

 $\min_{x} h(g(x))$ $\boldsymbol{\mathcal{X}}$

where

h(x) - is convex, non-smooth, has an easy projection g(x) - is a smooth mapping

Standard optimization trick, introduce a new variable

- $\min h(y)$ x,y
- such that g(x) = y

Problem: This problem is hard to solve (nonlinear programming with a non-smooth objective)

Solution: Look at the associated value function

The smallest τ for which $v(\tau) = 0$ is the optimal value of the original problem (SPGL1 trick)

Van Den Berg, Friedlander "Probing the Pareto frontier for basis pursuit solutions", SIAM 2008

$v(\tau) = \text{minimize}_{x,y} \quad \frac{1}{2} ||g(x) - y||_2^2$ such that $h(y) \leq \tau$

If we can compute $v(\tau)$ for any τ , we can use the secant method to update τ and find a root $v(\tau)=0$

$$\tau_{k+1} = \tau_k - v(\tau_k) \frac{\tau_k - \tau_{k-1}}{v(\tau_k) - v(\tau_{k-1})}$$

If h(x) is a gauge (think: nonsmooth norm like $\|\cdot\|_1$), we can upgrade the secant method to Newton's method with

$$v'(\tau) = -h^{\circ}(z$$

 $h^{\circ}(y)$ is the *polar* of h (think dual norm, like $\|\cdot\|_{\infty}$)

-g(x))

Computing the value function

How to solve this problem?

Objective function is smooth, projection is simple • might converge slowly

$v(\tau) = \text{minimize}_{x,y} \quad \frac{1}{2} \|g(x) - y\|_2^2$ such that $h(y) \le \tau$

Kaufman, "A variable projection method for solving separable nonlinear least squares problems" BIT Num. Math, 1975 Aravkin, Van Leeuwen, "Estimating nuisance parameters in inverse problems" Inverse Problems, 2012

Computing the value function

We'll use *variable projection* - for each fixed *x*, define

$$y(x) = \arg\min_{y} \frac{1}{2}$$

such that $h(y) \leq \tau$

Simple projection operation

- $||g(x) y||_2^2$

Computing the value function

Plugging this expression back in yields $v(\tau) = \arg\min_{x} \frac{1}{2} \|g(x) - y(x)\|_{2}^{2}$

Single-variable, unconstrained optimization Can be tackled with SD, LBFGS, etc.

Computing the value function

change

• minimal amount of changes to existing code

composite optimization

- Because of variable projection, derivatives with respect to x don't
- If you code can do non-linear least squares, it can handle convex-

Synthesis VS Analysis Interlude

This is the so-called *synthesis* model of signal reconstruction

/						

\sim			
\sim			
	I		
	I		
	l		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	I		
	l		

This is the so-called *synthesis* model of signal reconstruction

This is the so-called *synthesis* model of signal reconstruction

- Standard sparsity-promoting interpolation
 - $\min \|z\|_1$
 - such that RMz = b
- R Trace restriction operator
- M Measurement operator (adjoint curvelet transform)
- *b* Measured data
- z Signal coefficients

Analysis-based reconstruction

Ω
ω_1
ω_2
ω_3
ω_4
ω_5
ω_6
ω_7
ω_8
ω_9
ω_{10}
ω_{11}
ω_{12}
ω_{13}

 ${\mathcal X}$

Analysis-based reconstruction

Ω
ω_1
ω_2
ω_3
ω_4
ω_5
ω_6
ω_7
ω_8
ω_9
ω_{10}
ω_{11}
ω_{12}
ω_{13}

Analysis-based reconstruction

 $\min_{x} \|\Omega x\|_p$

s.t.Rx = b

- R Trace restriction operator
- Ω Cosparsity Dictionary (Curvelet Transform)
- *b* Measured data
- x Signal
- p -0 or 1

Synthesis VS Analysis

Note that synthesis \neq analysis unless M, Ω are orthonormal bases and $M = \Omega^{-1}$

Synthesis : building up a signal through a small selection of atoms

Analysis : carve away areas of Euclidean space where a signal cannot live (i.e., orthogonal to a large number of atoms)

Example: Analysis-based interpolation

 $\min_{x} \|\Omega x\|_1$ such that Ax = b

$v(\tau) = \min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \frac{1}{2} ||\Omega x - y(x)||_{2}^{2}$

 $y(x) = \arg\min_{y} \frac{1}{2} \|\Omega x - y\|_{2}^{2}$ such that $||y||_1 \leq \tau$

Matlab code - objective evaluation

function [f,g] = cosparsity_obj(A,b,x,Omega,tau) r = A*x-b;z = Omega*x;y = NormL1 project(z,tau); z = z - y; $f = 0.5*norm(r)^2 + 0.5*norm(z)^2;$ if nargout >=2 g = A'*r + Omega'*z;end end

Matlab code - outer loop

P = @(x,tau) NormL1_project(x,tau); obj = @(x,tau) cosparsity obj(A,b,x,Om,tau); [x,f1] = minFunc(@(x) obj(x,tau1),x,inner_opts); for i=1:ntau updates c = Om * x;df = -norm(P(c,tau1)-c, 'inf');tau1 = tau1 - f1/df;[x,f1] = minFunc(@(x) obj(x,tau1),x,inner_opts); end

Example: Analysis-based interpolation

 $\min \|\Omega x\|_0$ such that Ax = b

$v(\tau) = \min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \frac{1}{2} ||\Omega x - y(x)||_{2}^{2}$

 $y(x) = \arg\min_{y} \frac{1}{2} \|\Omega x - y\|_{2}^{2}$ such that $||y||_0 \leq \tau$

Note that au is now integer-valued - need to round secant method update

Compare to GAP method

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$

- 1. Projection: compute $z = \Omega x_k$ 2. Find the largest elements of z3. Remove the corresponding rows from Λ
- 4. Update solution estimate

Nam, et. al., "The cosparse analysis model and algorithms" (2013)

$\Lambda = \{1, \ldots, n\}$

$x_{k+1} = \arg\min_x \|\Omega_{\Lambda}x\|_2$ subject to y = Ax

Compare to GAP method

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$

- 1. Projection: compute $z = \Omega x_k$ 2. Find the largest elements of z3. Remove the corresponding rows from Λ
- 4. Update solution estimate

Nam, et. al., "The cosparse analysis model and algorithms" (2013)

$\Lambda = \{1, \ldots, n\}$

$x_{k+1} = \arg \min_x \|\Omega_{\Lambda} x\|_2$ subject to y = Ax

Costly/complicated

True signal

Input Data

True signal

Synthesis L1 (SPGL1) - SNR 14.9 dB

True signal

Cai, Osher, Shen - 'Split Bregman Methods and Frame Based Image Restoration' (2009)

Analysis L1 (Linearized Bregman) - SNR 14.3 dB

True signal

Analysis L1 (Ours) - SNR 15.0 dB

True signal

Analysis LO (Ours) - SNR 23.7 dB

True signal

Nam, et. al., "The cosparse analysis model and algorithms" (2013)

Analysis LO - GAP - SNR 23.4 dB

Difference - Synthesis L1

Difference - Analysis L1

Difference - GAP LO

Difference - Ours LO

L1 Summary

	SNR (dB)	Time (s)
Synthesis (SPGLI)	14.9	112
Analysis (Ours)	I 5.0	77.2
Linearized Bregman	14.3	188

LO Summary

	SNR (dB)	Time (s)
Ours	23.7	75
GAP	23.4	118

Extensions

Can be easily extended to handle

- data-side noise
- signal-side constraints

Applications - Robust Tensor Completion $\min_{x} \|\mathcal{A}\phi(x) - b\|_1$

 \mathcal{A} - subsampling operator $\phi(x)$ - mapping from tensor parameters -> full tensor b - measured data contaminated by impulsive noise

Example: Robust Tensor Completion $\min_{x} \|\mathcal{A}\phi(x) - b\|_1$ $v(\tau) = \min_{x} \frac{1}{2} \| \mathcal{A}(\phi(x + t)) \|_{x}$ $r(x) = \arg\min_{r} \frac{1}{2} \|\mathcal{A}(x)\|_{r}$ s.t. $||r||_1$

$$(x)) - b - r(x)||_2^2$$

$$(\phi(x)) - b - r \|_2^2$$
$$\leq \tau$$

Example:

BG Data Set

- ocean bottom setup
- 75% receivers decimated randomly • 5% of remaining receivers corrupted with noise = energy of
- decimated signal
- Hierarchical Tucker interpolation with previous L1 formulation

• 68 x 68 sources on a 150m grid, 201 x 201 receivers on a 50m grid,

Example:

We compare to

- L2 misfit original HT tensor completion
- Huber misfit smoothed L1

$$H_{\delta}(x) = \begin{cases} x^2 & \text{if } |x| \\ 2\delta |x| - \delta^2 & \text{if } |x| \end{cases}$$

48

Input Data - SNR OdB

49

L2 norm - SNR 8.8 dB

50

L1 norm - SNR 16.8 dB

51

Huber penalty - best parameter - SNR 16.7 dB

Difference - L2

Difference - L1

Robust Tensor Completion

	Recovery SNR (dB)	Time (s)
$\ell 2$	7.68	632
$\ell 1$	16.2	1072
Huber - best δ	15.9	1003

Huber performance versus δ

	Recovery SNR (dB)	Time (s)
$5 \cdot 10^{-6}$	I 3.4	I 578
$5 \cdot 10^{-5}$	15.9	I 003
$5 \cdot 10^{-4}$	8.32	928

Summary

Solve problems of the form $\min_{\ \, } h(g(x))$

with h(x) - is convex, non-smooth, has an easy projection g(x) - is a smooth mapping

With level set methods (SPGL1 trick) + variable projection

Summary

Applications to seismic data processing

- Cosparsity-based interpolation
- Robust tensor completion

Competitive compared to other existing sparsity-based methods

Future Work

Extensions to non-convex problems • Full waveform inversion

More seismic examples

- Source localization
- 4D seismic imaging

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

