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Why machine learning?

Machine	learning	should	be	applied	to	a	problem	when:
• There	exists	an	underlying	but	unknown	relationship	between	
input	and	output.

• There	is	no	known	physical	model	to	describe	the	relationship,	or	
there	are	too	many	unrealistic	assumptions	and	approximations.

Supervised	learning:
• Most	high	profile	applications	are	supervised	learning.
• Requires	large	database	of	truth	data	for	training.

Unsupervised	learning:
• Learn	latent	relationships	directly	from	the	data.
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Scattering physics
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Ubiquitous	in	experimental	physics.
Measure	the	scattering	pattern	from	a	known	
source	incident	on	a	material.
Performed	in	highly	controlled	and	calibrated	
laboratories	(laser	sources,	temperature	controlled,	
vacuums,	etc...).
Reflection	seismology	is	a	scattering	experiment	in	
an	uncontrolled	environment.
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Reflection seismology as an unsupervised learning 
problem  
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Approaches:
Physics	driven	(conventional)
Data	driven	(thesis	contributions)

Problem:
Automatically	segment	potential	
hydrocarbon	reserves	from	seismic	
images

Wednesday, October 26, 2016



Angle domain common image gathers
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θProblem:
Need	angle	dependent	reflectivity
responses

Solution:
Angle	domain	common	image	gather
migration
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Scattering theory (Zoeppritz)
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Problem:
Relate angle dependent reflectivity to rock 
physics.

Assumption: Ray theory approximation.

Solution: 

Problem: Non-linear, not useful for inversion.

R(✓) / VP , VS , ⇢
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Scattering theory (Shuey)
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Limitations:
Small perturbations over a background 
trend, valid < 30 degrees

Benefits:
Linear for i and g, invert using simple least 
squares
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Shuey term inversion as a projection
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Shuey term inversion as a projection
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Shuey term inversion as a projection
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Relation to hydrocarbons
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*m,	c,	k	are	geological	parameters	determined	
empirically	from	well	logs/laboratory	measurements

Hydrocarbon	reserves	are	found	from	outliers	of	a	crossplot!

Wednesday, October 26, 2016



Reality bites
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Problem:	
Shuey	components	can’t	explain	all	the	features	in	real	data!

Solution:	
Use	unsupervised	machine	learning	to	find	better	projections.
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Unsupervised learning problem
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X 2 Rn⇥d

n	is	number	of	samples	in	the	image,	
d	is	the	number	of	angles
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Marmousi II data
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Specifically	made	for	testing
amplitude	vs.	offset	analysis

Contains	gas-saturated	sand
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Seismic modeling
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Zoeppritz

Migrated	visco-acoustic	
survey
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Principle component analysis (PCA)

Eigendecomposition	of	the	covariance	matrix:

Project	onto	the	eigenvectors	with	the	two	largest	
eigenvalues.
Maximizes	the	variance	(a	measure	of	information).
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Crossplots of physically consistent data
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Crossplots of migrated data
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Kernel PCA

Problem:
Find	a	non-linear	projection	that	provides	better	
discrimination	of	trends	and	outliers.

Solution:
Use	the	“kernel-trick”	to	compute	PCA	in	a	high-
dimensional	non-linear	feature	space
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Kernel trick
PCA	can	be	calculated	from	the	Gramian	inner	product	
matrix:

Replace													with	a	kernel	

Example	c=2,	b=1
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Kernel PCA projections for consistent data
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Kernel PCA projections for migrated data
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Recap
Situation:	Finding	outlying	responses	in	projected	seismic	data.
Problem:	Physical	projection	can	not	explain	the	features	in	real		
data.
Solution:	Use	principle	component-based	projections.
Assessment:

• PCA	is	equivalent	for	physically	consistent	data.
• PCA	is	more	robust	to	processing/acquisition	artifacts.
• Kernel	PCA	makes	outliers	linearly	separable	from	the	background.
• Lost	direct	link	to	rock	physics.

Next:	Automatic	segmentation	(clustering)
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BIRCH	clustering,	developed	specifically	for	clustering	large	databases

Hierarchical clustering
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Results - PCA
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Results - Kernel PCA
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Summary

Successes:
Each	projection	could	segment	the	reservoir.
Kernel	PCA	provided	advantageous	multivariate	
geometries	(linearly	separable).

Challenges:
Manual	tuning	of	clustering	parameters.
Kernel	PCA	is	expensive	and	lacks	interpretation.
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Robust PCA

Problem:
Find	a	sparse	set	of	outlying	reflectivity	responses	against	a	
background	trend.
Assumption:
The	background	trend	of	similar	curves	is	highly	
redundant,	which	forms	a	low	rank	matrix.
Solution:
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L,S
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Convex relaxation

Rewrite	with	sparsity	promoting	convex	terms:

Solved	using	alternating	direction	method	of	multipliers
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Results - physically consistent data
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Results - migrated seismic
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Summary

Successes:
Segmentation	of	reservoir	in	both	images.
Physically	interpretable	segmentation	without	clustering.

Challenges:
Requires	tuning	of	one	optimization	trade	off	parameter.
Convergence	sensitive	to	the	rank	of	outliers,	not	well	
understood.
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Comparison on field data

Migrated	data	provided	by	BG	group	to	compare	
algorithms
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Dynamic	Intercept	Gradient	Inversion(DIGI)

Previous	clustering	based	approaches	
were	not	successful.....

Compare	robust	PCA	with	BG’s	DIGI
Extend	DIGI	to	use	principle	components	
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DIGI-inverse problem 
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Further	augmented	by	extended	elastic	reflectivity	(EER)	term:

EER(�me) = i cos(�me) + g sin(�me)

•	promotes	correlation	between	i	and	g
•										is	related	a	priori	geological	information

System	is	solved	using	the	conjugate	gradient	based	algorithm	LSQR.

�me
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Minimum energy projection
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EER(�me) = i cos(�me) + g sin(�me)

forms	an	image,	where	large	values	correspond	to	points	where	i	
and	g	are	not	correlated	(outliers)	along	the	projection									.�me

Thresholding	this	image	results	in	a	segmented	image.
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PCA extended DIGI
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Exact	same	algorithm,	but	use	the	principle
components	extracted	directly	from	the	data.
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Comparison method

Manually	threshold	the	image	to	segment	the	potential	
hydrocarbon	reserve	while	maintaining	the	least	amount	
of	spurious	segmentation.

Compare:
• Robust	PCA
• DIGI
• PCA	extended
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Results - robust PCA
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Results - DIGI
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Results - PCA extend DIGI
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Results - PCA extended DIGI
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Results - DIGI
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Why the difference?
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Summary

42

• Robust	PCA	provided	the	best	image	segmentation.
• PCA	extended	DIGI	better	separated	the	potential	reservoir	
from	the	background	trend.

• The	extracted	principle	components	showed	significantly	
different	shapes	than	the	Shuey	vectors.
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Epilogue

Outcome:
Generalized	a	conventional	analysis	approach	using	
unsupervised	learning	models.
Successful	in	segmented	potential	hydrocarbon	reserves	
from	seismic	data
Future:
More	data,	standardized	datasets
Quantitative	benchmarks
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