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Problem of interest

e ) (35

H(m) € CV*% discrete PDE
m € RY medium parameters
P € R™N  gelects field at receivers

ucCV field
d € C"™ observed data

qc CV source




_ _WRI

[T. van Leeuwen & F.J. Herrmann, 2013]

o 1 A° _
To minimize: mnllﬂiHPﬁ—dH% -5 |H(m)a — ql|3
at every outer iteration: AH (m) A\
* compute  u = argmin ( D ) u — ( dq>
u 2

e evaluate o(m, 1, \) & Vio(m, a, \)

e update m




Properties of the problem
u = arg m&n ()\ngm)> u — ()\dq>

® [ is indefinite, non-Hermitian

® |nconsistent
e full column rank




Properties of the problem
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_ . AH (m) Aq
0 = argmin ( P u—(d
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Solution of the sub-problem

Main challenge: solve  u = argmin ()‘H]gm)) u — (Adq)

e 2D: direct factorization  [L. M. Delves & I. Barrodale, 1979 ; T. A. Davis, 2011]

In 3D we want:
¢ jteratively & matrix-free
e no QR or LU factorizations
e at cost cost of a few PDE solves




Proposed algorithm

LS-problem in normal-equation form:
(AH(m)*H(m) + P*P)u = A\H(m)q + P*d

Split-preconditioning by A\ H w/o computations

(I+H,"P*PH ')y = Aq+ (Hy)"'P*d, with Hyu=y

e m + 1 distinct eigenvalues (identity + low-rank)
e even for inexact Helmholtz



Proposed algorithm

Exploit identity + low-rank structure:

(I+H>T*P*PH>T1)Y = Aq + (Hi)_lp*d, with Hyu =y

=

by solving H=*P* =W

o Tlrec Helmholtz problems (inexactly)
¢ |low-rank factorization
o W € CV*™ dense but extremely skinny



Proposed algorithm

(I+WW%y =Aq+ Wd, with Hyu=Yy

20|

30| - inverses transformed into
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Proposed algorithm

Leverage low-rank factorization:

(I+WW%y =Aq+ Wd, with Hyu=Yy

and invert system matrix as

y= (I —-W({I+WW)'W*(\q+ Wd),

sowe only needtoinvert (I + W*W) e C™”™
(this is alway small enough to do explicitly)

with Hyu=1y
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Proposed algorithm

for angular frequency w do
// solve m Helmholtz problems
HIW = P
M=I+WW)!
for right hand side 1 do
// solve for u,
Hyu; =Yy;
end for
end for
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Proposed algorithm

Matrix-free algorithm
¢ no direct solves
¢ related mildly overdetermined systems

Computational cost:
e 1 PDE per receiver
e ] PDE per source

Memory requirements:
e 1 vector per receiver (W)
e system matrix ( H)
e storage for solving systems with H

[L. M. Delves & I. Barrodale, 1979]




14

Proposed algorithm

Inexact solutions to the linear systems:

for angular frequency w do
// solve m Helmholtz problems inexactly
— | HiW = P* + Ry,
M= I+ W*W)!
for right hand side b; do
// solve for u; inexactly
— [ Hyu; =y; +ry j
end for
end for
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Proposed algorithm
error propagation (1 right-hand-side, 1 receiver case):

)\W p + I'w

/T

(I +ww')y = A\q + Wd

Hywua=y+ry,
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Proposed algorithm
error propagation (1 right-hand-side, 1 receiver case):

)\W p T Iw
(I + WW* y Aq + wd —> solveas: y = (I — ﬁ”LVAVVAV*)()\q + Wd)
1

1 +w*w

with 1M =
Hywua=y+ry,
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Proposed algorithm

® several bounds derived

e Multi-stage error propagation makes deriving (useful) bounds in
terms of observables very challenging.

® \/ery pessimistic bound may be all what is possible.

® The aim is to obtain (asymptotically) correct dependence on
condition numbers / spectral norms of involved matrices and
relative residuals.

® work in progress




_ Suggested PDE-solver

18

need to store 1 vector per receiver
-> use PDE-solver with low-memory & setup requirements

Helmholtz:

e CGMN ( only 4 vect ors) / CARP-CG [A. Bjorck & T. Elfving, 1979; D. Gordon & R. Gordon, 2010;

T. van Leeuwen & F.J. Herrmann, 2014]

e shifted-Laplacian w/ multi-grid [Y.A. Erlangga, 2008; H. Calandra et al., 2013]
e combination of the above [R. Lago & F.J. Herrmann, 2015]
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Simultaneous receivers

Simultaneous sources reduce the number of sources to be modeled.
Can we use similar ideas with the proposed algorithm?

Memory and computational cost now depends on sources + receivers.
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Simultaneous receivers

What is the number of receivers is too large, storage wise?

Can we approximate the least-squares problem using
randomization & subsampling (simultaneous receivers)?

Use ideas from algorithms such as
e [V Rokhlin & M Tygert, 2008]

¢ Blendenpik [H. Avron et. al., 2010]
® | SRN [X. Meng, M. A. Saunders, M. W. Mahoney, 2014]



https://scholar.google.fi/citations?user=inS9brYAAAAJ&hl=fi&oi=sra
https://scholar.google.fi/citations?user=inS9brYAAAAJ&hl=fi&oi=sra
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Simultaneous receivers

Blendenpik:

e Randomize (mix the rows) and subsample a very overdetermined
system.

e Use R from QR of the approximated and well conditioned problem
as a preconditioner for LSQR to solve the original problem.

e Define randomize & subsample matrixas: V = SFD,
VeC>m l<m

D € R™*™ random [+1 , -1] on the diagonal
F e C™™ DFT matrix

S € R™X™  gubsampling matrix, restriction of the identity




Simultaneous receivers

Initial attempt in this work:

apply randomization and subsampling to the receiver block only
for a one-step approximation:

_ . AH(m)\ ([ Aq
0 = argmin vp U vd

What should V be ? ongoing research, use V. = SFD

to illustrate the principle
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Simultaneous receivers

Initial attempt in this work:

apply randomization and subsampling to the receiver block only

for a one-step approximation:

reduces

e # of PDE solves
e Hvectors to be stored

(

AH (m)
VP

)
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Simultaneous receivers

_ . AH(m)\ ([ Aq
0 = argmin - Al R

Approximates system matrix and right hand side as:

(M H(m)*H(m) + P*V*VP)u = A\ H(m)q+ P*V*Vd.
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Simultaneous receivers

Example:

investigate error in the fields and in the resulting gradient,
introduced by subsampling and randomization.

for now, assume:
¢ solve linear systems exactly
e fixed number of sources (30)
e ] frequency (4Hz)




Simultaneous receivers
0

Example: 500 e —  —_m—_ S

e 100 receivers in total
(~55 m interval)

e only work with randomized 150052

subsets of varying size
(previous slides)

e 30 sources
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gradient based on 100 sim receivers
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gradient based on 90 sim receivers x 10"
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gradient based on 80 sim receivers x 10"
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gradient based on 70 sim receivers x 10"
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gradient based on 50 sim receivers x 10"
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gradient based on 40 sim receivers
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gradient based on 30 sim receivers
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Simultaneous receivers

gradient based on 10 sim receivers x 10*
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Simultaneous receivers
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sign(g.) — sign(g)
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sign(g.«) — sign(g)
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sign(g.«) — sign(g)
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Simultaneous receivers
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Simultaneous receivers
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10 x 10 x 2 km, 5 Hz, 27-point discretization, ~1e7 grid points, source at [0,0,0]

L R0
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3D Example

- wavefield in frue model
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Conclusions

e Enables WRI in 3D.

e Accepts any Helmholtz solver for the sub-problems.

e Compute 1 Helmholtz problem per source and 1 per receiver.
® Store 1 vector per receiver.

e Can use simultaneous receivers to reduce computational cost and
memory use.

® Proposed algorithm might be used for other large-scale mildly
overdetermined problems w/ many variables & few constraints.
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Future work
e Answer some open questions on how to combine simultaneous
receiver and simultaneous source principles.

e Adapt optimization algorithms to be able to work with simultaneous
sources & receivers. (partially done)

e Error bound derivations are work in progress.
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