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Motivation

Land data set with surface sources and surface & well receivers
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Motivation

Land data set with surface sources and surface & well receivers

Constant density acoustic inversion (2D slice)

Result without projection Result with projection

0 2000 ~2000 0 2000 ~2000 0 2000
X [m] x [m] x [m]

Fore challenging problems, some regularization is required




A few regularization sirategies

Objective function: f(m) (differentiable, time or frequency)

Tikhonov / quadratic: d(m) = f(m) A gHleHQ | SHRQmHQ
Gradient filtering: my,1 = mg — YFVyf(m)

Constrained formulation: min f(m) s.t. me G ﬂcz

Im



A few regularization sirategies

Tikhonov / quadratic: o(m) = f(m) + = ||Rim]|? - §HR2mH2

Potential problems:
e squared norm is not an exact penalty
o difficult/costly to determine penalty-parameters
e potentially ill-conditioned Hessian
@

may not be obvious which constrained problem is solved for a
given penalty parameter



A few regularization strategies

abuadratic penalty (2-norm squared) ; 2—norm penalty (not squared)
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error

A few regularization strategies

error

%uadratic penalty (2-norm squared)
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; 2—norm penalty (not squared)
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exact versus non-exact penalty

Toy problem:

1
min §Haj — 1|5 st. =2

Quadratic-penalty:
1
min 7 ||z — 13 + Allz — 2|3

2-norm penalty:

1
min 7 ||z — |3 + |z — 2|2



[A.). Brenders & R.G. Pratt, 2007]

A few regularization sirategies

Gradient filtering: my, 1 =mg — YFVy,f(m)

If the gradient filter I is the inverse Hessian, this is just Newton’s method

Potential problems:

e filtered gradient is not a gradient of the objective anymore
® no obvious generalization to include multiple filters



A few regularization sirategies

Constrained formulation: ~ min fm) st. meG ﬂ(/’z

“find a model which satisfies all pieces of prior info simultaneously”

constraints can be satisfied at every iteration

feasible part of the objective function is unmodified

works with gradient/quasi-Newton/Newton-type methods
can define more than two constraint-sets

® no weights or other parameters required, just define the sets
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Prior information as convex sets
Projection (Euclidean, minimum-distance projection):

Pe(m) = argmin ||[x —mlls s.t. x €4 ﬂCg

X

Important property:

Pc(m) = Pc(Pc(m))
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Prior information as convex sets

example 1: (spatially varying) bound constraints:

ClE{m‘blémeu}

can include reference models as:

b; = myer — 0m

Projector: (element-wise)

Pec, (m) = median{b;, m, b,, }
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Prior information as convex sets

example 2: minimum smoothness of the model:

“the 2D spatial Fourier-transform of the mirror-extended model is
contained within an ellipse”

E e R¥YWXN " Mirror-extention

m € RY medium parameters

F c CV*N  DFT matrix

S € RY*Y  Selection matrix (diagonal), 'filter coefficients’
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Prior information as convex sets

example 2: minimum smoothness of the model:

1.2D mirror extension of the model (to avoid periodic boundaries)

2.2D DFT
3.Remove coefficients outside ellipse (highest spatial frequencies)

4.2D inverse DFT

ellipse takes directional varying smoothness (geology) into account
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Prior information as convex sets

example 2: minimum smoothness of the model:

® Choose initial ellipse based on the lowest frequency band and the
smoothness of the start model.

e Adapt to different frequency bands by stretching the ellipse based on a
formula like: dfmax

Umin

Projector: Pe,(m) = E*F*SFEm
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

C1( )Cz is convexif Cyand Csare convex
We would like the model to be in C; ﬂ C2 at every iteration

One possibility:
min £(m) + 1, (m) + ic, (m) o(2) = {0

In
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

min f(m) T L, (m) T LC, (m) — not differentiable

104

Can use forward-backward splitting / proximal-gradient algorithmes.
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

Project onto an intersection of convex sets:
¢ sometimes known analytically
e otherwise compute numerically; Dykstra’s algorithm is used in this work
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square

Algorithm 1 Dykstra.
xo=m, pp=0,g0=0
Fork=0,1, ...

vk = Pc, (xk + p)
Pk+1 — Xk T Pk — Yk
X1 = e, (Vi + qi)

dk+1 = Yk T 4k — Xk+1
End
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square

Algorithm 1 Dykstra. 1
Xo=m, po=0,g0=0 ;
Fork=0,1, ... R

>{ Vi = ‘@(:1 (Xk—|—pk) J >2:2 E
D1 = Xk + Pk — Vi N

1 = Po, (e + qn)| 3 g
dk+1 = Yk T 4k — Xk+1 o

End

only need projection onto each set separately
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square start
Algorithm 1 Dykstra. T 11/
xo=m, po=0,q0 =0 N
Fork=0,1, ... - ,
Yk = P, (% + pr) :: f
Pk+1 = Xk + Pk — Yk N /f?
Xi+1 = ¢, (Ve + qx) 3
dk+1 = Yk T Gk — Xk+1 N AN
Fnd converged

1.8 1.9 2 21 22 23 24
X
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Dyksira splitting

Toy example:
find projection onto intersection of a circle and a square

2.6

2.57

2.4

/ |
18—
1.8 1.9 2 2.1

/

g 1O ] ] . . . . | . ..
’ ’
’ .

AN

converged

POCS would converge here,
feasible point, not the projection onto

X

2.2

2.3

2.4




Dyksira splitting

Projection-onto-convex-sets (POCS) solves the convex feasibility problem:

find x € (Cq mCQ

Dykstra’s algorithm solves:

. 1
min ic, (@) + te, (@) + 5 |1z — y|
with indicator function: 0 if el
Le(x) = . |
+oo if x ¢ C.
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Dyksira splitting

Projection-onto-convex-sets (POCS) solves the convex feasibility problem:

find x € (Cq mCQ

Dykstra’s algorithm solves:

|z — yl|?

min tc, () + e, ()

IS equivalent to: 1
; min - ||z —y||° st. z el ﬂCg
r 2




Dyksira splitting
Projection-onto-convex-sets (POCS):

find z € ﬂ Co find any point in the mtersgctmn,
may be the closest point

Dykstra’s algorithm solves: 2.5/ N

| 1 2.4 ! .
min e, () + i, (z) + 5l = I T
=

X
ool
o %
IS equivalent to: aql 10
1 3
min [z —y[* st z el mCQ :
r 2
1.9r
1.8

1.8 1.9 2 21 22 23 24
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

Projected-gradient: my1 = Pe(my — vV f(myg))
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Algorithmic development

min f(m) s.t. m e ﬂCQ

Im

Projected-gradient: my1 = Pe(my — vV f(myg))

Can this simply be accelerated using Hessian approximation B(my)?

my1 = Pe(my, — vB(my) ™ Vi f(my))
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Algorithmic development

min f(m) s.t. m e mCQ

104

Projected-gradient: my; = Pe(my — vV, f(my))

Can this simply be accelerated using Hessian approximation B(my)?

my | = Poi==B{m; )]  Vmf(myg))

Generally not, when using the Euclidean projection and general B(my)
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minx Ax —x*b s.t. xo >0 15

X

Projected gradient algorithm

0.5

‘Brute force’ projected Newton (incorrect)

-1.5
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minx Ax —x*b s.t. x5 >0

X

Projected gradient algorithm

‘Brute force’ projected Newton (incorrect)

-1.5
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minx " Ax — x*b
X

S.1.

‘Brute force’ projected Newton (incorrect)

Projected gradient algorithm

(L‘Q>O

-0.6

Solution of constrained problem}|
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Algorithmic development

Projected-gradient: my11 = Pec(my — YV f(myg))

Projected Quasi-Newton [M. schmidt et. al., 2009

¢ solves quadratic sub-problem with constraints using the spectral projected-
gradient algorithm (inexactly)

e |-BFGS Hessian

Projected Newton-type:
¢ solves quadratic sub-problem with constraints
o efficient if approximate Hessian is ‘easy to invert’
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Algorithmic development

Projected Newton-type:
e solves quadratic sub-problem with constraints:

Q(m) = f(mg) + (m —my) "V, f(mg) + (m — my)" By (m — my,)

m =  min m
k+1 mel. 1 Co Q( )

o efficient if approximate Hessian is ‘easy to invert’ (factored Hessian, sparse &
well conditioned, diagonal)

Multiple algorithms can solve the constrained sub-problem
We use Alternating Direction Method of Multipliers (ADMM)
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Algorithmic development

Projected Newton-type:
e solves quadratic sub-problem with constraints:

m —  min m
= min Q(m)

e can be reformulated as: [M. Schmidt et. al., 2011]

Vi = Bk_lvmf(mk,) (unconstrained Newton-step)

. 1 5
My = mEI(I,’leH(l]CQ 5”3% — mHBk

(projection w.r.t. metric induced
by the approximate Hessian)
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Workflow summary

1. Define convex feasible sets, possibly velocity & frequency dependent
2.Set up Dykstra’s algorithm for projection onto intersections of sets

3.Set up an algorithm to solve the quadratic sub-problem with constraints
(ADMM)

4.Solve waveform inversion problem using the a Projected Newton-type
algorithm




_ Algorithm
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Projected quasi-Newton (PQN) version:

At every iteration of PQN:
e solve PDE’s
¢ solve quadratic problem with constraints using SPG

e at every iteration of SPG:

e solve projection problem onto an intersection of convex sets using Dykstra’s algorithm

e at every iteration of Dykstra’s algorithm:
e compute projections on each set separately




_ Algorithm
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Projected Newton-type version:

At every iteration of projected Newton-type:
e solve PDE’s
¢ Solve quadratic problem with constraints using ADMM

e at every iteration of ADMM:

e invert Hessian (possibly iteratively)
e solve projection problem onto an intersection of convex sets using Dykstra’s algorithm

e at every iteration of Dykstra’s algorithm:
e compute projections on each set separately




® Sources and receivers at top & bottom of the domain
e 10 Hz data

® ||Inoisel|2/||signall]2 = 0.3

e used bound constraints and minimum smoothness constraints

True velocity model Initial velocity model Result without projection Result with projection

1000“ -

1000 2000 30000 1000 2000 30000 1000 2000 30000 1000 2000 3000
x [m] x [m] X [m] x [m]

acts as an image-domain noise filter in this case
37

Velocity [m/s]



Example 2 - FWI on a real land dataset

Land data set with surface sources and surface & well receivers
Constant density acoustic inversion (2D slice)

Result without projection Result with projection

I 6000
1000
5000
= 2000
= 14000 ‘G

3000

4000 I 3000

-2000 0 2000 -2000 0 2000 -2000 0 2000
X [m] X [m] x [m]
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Example 2 - FWI on a real land dataset

® Bound constraints

® Minimum smoothness constraints

Result without projection Result with projection

6000
1000 I @
5000 2
T 2000 £
N {4000 5
3000 | S
>

4000 I 3000

~2000 0 2000 ~2000 0 2000 ~2000 0 2000
x [m] x [m] x [m]
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Example 3 - WRI

15

Chevron blind-test elastic data set, work
by Zhilong Fang

Acoustic constant density inversion
(result in progress, March 2015)

20 o5 _ 30 35 40
Lateral [km]

Without minimum smoothness constraint
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Example 3 - WRI

25
Lateral [km]

Using minimum smoothness constraint
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Related geophysical work

[A. Baumstein, 2013] . This work attempts to find the projection onto an
intersection using POCS, for different constraints. Includes preconditioner in
the Projected-gradient algorithm. May not converge.

[E. Esser et. al., 2014; 2015] (UBC Tech report; this EAGE). Similar philosophy/ideas
& problem formulation, different constraints and algorithmes.

[B. Peters, B. R. Smithyman & F.J. Herrmann, 2015] (UBC Tech report) projected quasi-
Newton based version of this presentation.

[B. R. Smithyman, B. Peters & F.J. Herrmann, 2015] (this EAGE). About the land dataset,
uses projected quasi-Newton.

[S. Becker et. al., 2015]. (this EAGE) Also uses projected quasi-Newton, for
projections onto a single set. (similar)

[B. Peters, Z. Fang, B. R. Smithyman & F.J. Herrmann, 2015] (Ssubmitted to SEG 2015
conference). About the Chevron blind-test dataset (2014). Projected
Newton-type using ADMM.
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Summary & conclusions
e Can combine different regularization approaches as:

, o
min f(m) + §HR1mH% + §\|R2m\\§ s.t. m e (Cq ﬂCg

® Developed flexible and extendable framework for including
constraints for any differentiable objective.

e \Works with various optimization algorithms.
® Requires no extra PDE-solves.

® Easy to use, prior information translates into constraints directly,
without penalty parameters.




_ Outlook

44

e Add more constraint sets with their projectors (suggestions?)
e \Vill be available in the SLIM software.
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