Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Recent developments in compressive sensing for time-lapse studies

Felix Oghenekohwo and Felix J. Herrmann

Collaborators : Rajiv Kumar, Haneet Wason, Ernie Esser, Ning Tu

Overview

Summary

- Timelapse (4D) & CS
- Challenges for 4D
- Recent CS extensions
- Stylized examples

Linearized Inversion of time-lapse seismic data Conclusions Nonlinear inversion Future work

Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, "Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology", Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012 Felix J. Herrmann, "Randomized sampling and sparsity: Getting more information from fewer samples", Geophysics, vol. 75, p. WB173-WB187, 2010

Compressive sensing paradigm

Find representations that reveal structure

transform-domain sparsity (e.g., Fourier, curvelets, etc.)

Sample to break the structure

- destroy sparsity

Recover *structure* by promoting

sparsity via one-norm minimization

randomized acquisition (e.g., jittered sampling, time dithering, encoding, etc.)

Compressive sensing in 4D

Sampling

Sparsity-promoting recovery \mathbf{X} recovered data: $\mathbf{\tilde{d}} = \mathbf{S}^{H}\mathbf{\tilde{x}}$

$\tilde{\mathbf{x}} = \arg\min \|\mathbf{x}\|_1$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

Probing time-lapse data

SAME Geometry – regularly & densely sampled – IDEAL but UNREALISTIC CASE

Structure - curvelet representation

Can we exploit the structure in the time-lapse data simultaneously ?

Dror Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Richard G. Baraniuk. An Information-Theoretic Approach to Distributed Compressed Sensing (2005)

Distributed compressive sensing - joint recovery model (JRM)

common component

- Key idea:
 - use the fact that *different* vintages share common information
 - components with *sparse* recovery

invert for common components & differences w.r.t. the common

Interpretation of the model -w/&w/orepetition

- In an *ideal* world $(\mathbf{A}_1 = \mathbf{A}_2)$

 - expect good recovery when difference is sparse
 - but relies on "exact" repeatability...
- In the *real* world $(\mathbf{A}_1 \neq \mathbf{A}_2)$
 - no absolute *control* on *surveys*
 - calibration errors
 - noise...

• JRM simplifies to recovering the difference from $(\mathbf{b}_2 - \mathbf{b}_1) = \mathbf{A}_1(\mathbf{x}_2 - \mathbf{x}_1)$

Conventional versus proposed method

Current

Expensive dense acquisitions for baseline or/and monitor

Compute differences from baseline/monitor

Effort to repeat acquisition geometry is challenging

Independent processing/inversion

	Distributed Compressed Sensing
	Cheap subsampled acquisitions for both surveys
$\boldsymbol{\zeta}$	Compute differences from the innovations
	Relaxation of repetition in view
	Joint processing/inversion

Felix J. Herrmann and Xiang Li, "Efficient least-squares imaging with sparsity promotion and compressive sensing", *Geophysical Prospecting*, vol. 60, p. 696-712, 2012.

Ning Tu and Felix J. Herrmann, "Fast imaging with surface related multiples by sparse inversion", Geophysical Journal International, vol. 201, p. 304-317, 2014.

Application to imaging -linearized inversion of time-lapse data

Migration **Problem formulation**

 $\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$ subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \leq \sigma$

where

- $\delta \tilde{\mathbf{m}} = \mathbf{C}^H \tilde{\mathbf{x}}$

- **Linearized Demigration** operator
- $\mathbf{A} = \nabla \mathbf{F}[\mathbf{m}_0, q] \mathbf{C}^H$
 - $\mathbf{b} = \mathbf{D} \mathbf{F}[\mathbf{m}_0, q]$

Migration Dimensionality reduction

$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$ subject to $\|\underline{\mathbf{A}}\mathbf{x} - \underline{\mathbf{b}}\|_2 \le \sigma_k$

where

 $\underline{\mathbf{A}} = (\mathrm{RM}) \, \mathbf{A}$

 $\underline{\mathbf{b}} = (\mathrm{RM})\,\mathrm{D} - \mathrm{F}[\mathbf{m}_0, \bar{q}]$

 $\delta \tilde{\mathbf{m}} = \mathbf{C}^H \tilde{\mathbf{x}}$

Migration vintages

common component

 $\mathbf{A}_2 = \mathbf{A}_2 = \nabla \mathbf{F}[\mathbf{m}_{2_0}, q_2]\mathbf{C}^H$

 $\mathbf{A}_1 = \mathbf{A}_1 = \nabla \mathbf{F}[\mathbf{m}_{1_0}, q_1]\mathbf{C}^H$

Timelapse models

Initial/Difference

Background velocity model

Baseline perturbation

Monitor perturbation

Horizontal distance (m)

Time-lapse reflectivity

Zone of interest

Migration

Modeling parameters

- 225 shots @ approx. 25m interval
- 225 receivers @ approx. 25m interval
- 120 frequencies between 5 & 35Hz for imaging -
- Shot records of 4seconds
- Ricker wavelet @ 20.0Hz
- Baseline & Monitor with "different" source/receiver positions -

Objective

- Imaging of baseline/monitor
- Observe and interpret changes in reflectivity
- Compare independent (IRS) and the joint method (JRM)

Migration

- Use 15 randomly selected sources and all the frequencies
- (1) Conventional RTM with data
- (2) Least squares RTM

 - Exploit sparsity (in curvelet domain) of reflectivity
 - Ricker wavelet @ 20Hz
 - Fairly accurate background velocity model

- Randomly select 15 sources and 16 frequencies at each iteration - No renewal of sources, but frequency redraw at each iteration

Horizontal distance (m)

Joint LSM

Independent LSM

Joint LSM

RTM Image

Horizontal distance (m)

Joint LSM

Independent LSM

Joint LSM

Time-lapse Image

RTM Image

Indept. LSM

2000 3500 4000 2500 3000 Horizontal distance (m)

Joint LSM

Time-lapse Image

Joint LSM

2500300035004000Horizontal distance (m)

What happens when there is a gap in the monitor data? How do we deal with the acquisition footprint?

Independent LSM

Joint LSM

Horizontal distance (m)

Joint LSM

Horizontal distance (m)

Independent LSM

Joint LSM

 2500
 3000
 3500
 4000

 Horizontal distance (m)

Joint LSM

Horizontal distance (m)

Independent LSM

Joint LSM

2000

 2500
 3000
 3500
 4000

 Horizontal distance (m)

Joint LSM

4000 3500 Horizontal distance (m)

Summary

surveys and processing.

Speed-up imaging using subsets of data via sparsity-promotion.

shared information.

Provided we understand the *physics* of our model, we can reconstruct, process and interpret time-lapse vintages accurately.

- *Randomized* sampling techniques may be extended to time-lapse seismic
- Process time-lapse data jointly, not independently, in order to exploit the

- Joint recovery method still fairly stable with respect to large acquisition gaps.

Application to FWI -Nonlinear inversion of time-lapse data

<u>Xiang Li, Aleksandr Y. Aravkin, Tristan van Leeuwen, and Felix J. Herrmann,</u> "Fast randomized full-waveform inversion with compressive sensing", *Geophysics*, vol. 77, p. A13-A17, 2012.

Sparsity-promoting Gauss-Newton

$$\underset{\delta \mathbf{m}_{i}}{\text{minimize}} \frac{1}{2} \| \mathbf{D}_{i} - \mathcal{F}(\mathbf{m}_{i}^{k}; q_{i}) - \nabla \mathcal{F}(\mathbf{m}_{i}^{k}; q_{i}) \mathbf{C}^{T} \mathbf{x}_{i} \|_{2}^{2} \quad \text{s.t} \quad \| \mathbf{x}_{i} \|_{1} < \tau_{i}$$

- $\delta \mathbf{m}_{i} = \mathbf{C}^{T} \mathbf{x}_{i}$ $\mathbf{m}_{i}^{k+1} = \mathbf{m}_{i}^{k} + \delta \mathbf{m}_{i}$
- **D** : observed data
- \mathcal{F} : forward modelling kernel m : model parameters
- $\nabla \mathcal{F}$: Jacobian

 - q : source function
- **C** : curvelet transform $\delta \mathbf{m}$: model update

_Inversion with JRM

$$\tilde{\mathbf{z}} = \arg \min_{\mathbf{z}} \frac{1}{2} \| \mathbf{b} - \mathbf{A} \mathbf{z} \|_{2}^{k}$$
 $\mathbf{A}_{i} = \nabla \mathcal{F}(\mathbf{m}_{i}^{k}; \mathbf{b}_{i} = \bar{\mathbf{D}}_{i} - \mathcal{F}(\mathbf{m}_{i}^{k}; \mathbf{b}_{i} = \bar{\mathbf{D}}_{i} - \mathcal{F}(\mathbf{m}_{i}^{k}; \mathbf{b}_{i} = \mathbf{m}_{i}^{k} + \delta \mathbf{m}_{i})$

$|_{2}^{2}$ s.t. $||\mathbf{z}||_{1} < \tau$

- ; \bar{q}_{i}) \mathbf{C}^{T}
- $\mathbf{m}_{\mathrm{i}}^{k}; ar{q}_{\mathrm{i}})$
- $\widetilde{\mathbf{z}}_i)$

Baseline

Difference

Set-up

Modeling parameters

38 shots (150m spacing) 113 receivers (50m spacing) Different acquisition geometry Ricker wavelet @ 12Hz

Modified Gauss-Newton

Assume good starting model Draw randomly selected shots @ every iteration Started inversion @ 3Hz to 20Hz 8 frequencies per band 10 Gauss-Newton subproblems 10 iterations per subproblem

Independent inversion

SNR = -4.5dB

Joint inversion

SNR = 1.4 dB

Summary

Gauss-Newton inversion combined with JRM.

Significant attenuation of artifacts in the time-lapse difference model obtained from joint inversion, giving improved signal to noise ratio

Recommend using the JRM inverted models for subsequent migration.

With subsampled time-lapse data, we can perform 4D FWI using a modified

Future work

Timelapse imaging with multiples Asymmetric acquisition geometry Multiple vintages 3-D linear/non-linear inversion of time-lapse data set

Acknowledgements

Thank you for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

