Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Fast "online" migration with Compressive Sensing Felix J. Herrmann

Fast "online" migration with Compressive Sensing Felix J. Herrmann, Ning Tu, and Ernie Esser

with help from Mengmeng Wang & Phil SLIM 🛃 University of British Columbia

Motivation

Push from processing to inversion exposes challenges w.r.t.

- handling IO for larger and larger datasets
- computational resources needed by wave-equation based inversions

Sparsity-promoting inversions:

- produce hifi/high-resolution results
- but require too many computations & passes through the data (IO), and
- are algorithmically complex

Stifles uptake by industry...

RTM imaging via adjoint, high-pass filtered to remove low-wavenumber RTM artifacts

Felix J. Herrmann and Xiang Li, "Efficient least-squares imaging with sparsity promotion and compressive sensing", Geophysical Prospecting, vol. 60, p. 696-712, 2012 Ning Tu and Felix J. Herrmann, "Fast imaging with surface-related multiples by sparse inversion", Geophysical Journal International, vol. 201, p. 304-317, 2015

Inversion vs processing - sparsity-promoting least-squares migration (SPLSM) Lateral distance (m) 5000 10000 15000

Depth (m) 2000 2000

SPLSM image via inversion, # of wave-equation solves roughly equals 1 RTM w/ all data

Contributions

New "online" scheme that provably inverts large-scale problems by working on small randomized subsets of data (e.g. shots) only making the objective strongly convex by thresholding the dual variable

Extremely simple "three liner" implementation that

- Imits # of passes through data & offers flexible parallelism

Application areas include:

least-squares migration & AVA

▶ is easily extendible to include e.g. on-the-fly source estimation & multiples

[Shen et. al. '01]

Sparsity promotion

Basis Pursuit (BP):

minimize \mathbf{X} subject to Ax = b

- designed for underdetermined systems
- needs many iterations

$\|\mathbf{x}\|_1$

undergirds most sparse recovery problems & compressive sensing (CS)

[Daubechies ,03; Figueiredo and Nowak, '03; Yin et al. , '08; Beck and Teboulle, '09']

ISTA Iterative Shrinkage Thresholding Algorithm

1.	for $k = 0, 1, \cdots$
2.	$\mathbf{z}_{k+1} = \mathbf{x}_k$ –
3.	$\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z})$
4.	end for

*where $S_{\lambda}(x) = \operatorname{sign}(x) \cdot \max(|x| - \lambda, 0)$ is soft thresholding and t_k are step lengths

- simple but converges slowly, especially for λ small
- BP corresponds to non-trivial limit $\lambda \to 0^+$
- requires (complicated) continuation strategies for λ

$$-t_k \mathbf{A}^* (\mathbf{A}\mathbf{x}_k - \mathbf{b}_k)$$

 $\mathbf{z}_{k+1})$

Gilles Hennenfent, Ewout van den Berg, Michael P. Friedlander, and Felix J. Herrmann, "New insights into onenorm solvers from the Pareto curve", Geophysics, vol. 73, p. A23-A26, 2008.

Ewout van den Berg and Michael P. Friedlander, "Probing the Pareto frontier for basis pursuit solutions", SIAM Journal on Scientific Computing, vol. 31, p. 890-912, 2008

Observations

- black boxes with clever state-of-the-art "tricks"

But, their

- implementation is rather complicated & somewhat inflexible
- design is not optimized for overdetermined problems

convergence is too slow for realistic seismic problems w/ expensive matvecs & IO

SPLSM w/ CS - slow convergence

SPLSM image via inversion w/ fixed randomized simultaneous shots and in the presence of modelling errors

[Herrmann & Li, '12; Ning & Herrmann, '15]

Migration

Seismic problems are

- often overdetermined
- often "inverted" by applying the (scaled) adjoint (e.g. migration)

Least-squares inversion

Consistent & inconsistent overdetermined systems can be solved by

which requires

- multiple matrix-free actions of $\{\mathbf{A}, \mathbf{A}^H\}$
- multiple paths through the data (= many wave-equation solves), and
- does not exploit structure in X

Example - noise-free

Example - noisy

Example – proposed method

```
for k=1:niter
```

```
inds = randperm(m);
rk =inds(1:batch);
Ark = A(rk, :);
brk = b(rk);
tk = norm(Ark*xk-brk)^2/norm(Ark'*(Ark*xk-brk))^2;
zk = zk-tk*Ark'*(Ark*xk-brk);
xk = sign(zk).*max(abs(zk)-lambda,0)
```

end

Fast randomized least squares

Hot topic in "big data" and randomized algorithms

sketching techniques that randomly sample rows & solve [Li, Nguyên & Woodruff, '14]

- randomized preconditioning, e.g. w/ QR factorization on reduced system [Avron et. al., '10] randomized Kaczmarz [Strohmer & Vershynin,'09; Zouzias & Freris, '13]

These do not exploit structure (e.g. sparsity) & may require infeasible storage.

Felix J. Herrmann and Xiang Li, "Efficient least-squares imaging with sparsity promotion and compressive sensing", Geophysical *Prospecting*, vol. 60, p. 696-712, 2012 Ning Tu and Felix J. Herrmann, "Fast imaging with surface-related multiples by sparse inversion", Geophysical Journal International, vol. 201, p. 304-317, 2015

Leveraging the fold & threshold Randomized Iterative Shrinkage Thresholding Algorithm (RISTA)

Work /w for each iteration w/ independent randomized subsets of rows only

- simultaneous sourcing/phase encoding
- compressive sensing

RISTA Randomized Iterative Shrinkage Thresholding Algorithm

1.	for $k = 0, 1, \cdots$
2.	$\mathbf{z}_{k+1} = \mathbf{x}_k$
3.	$\mathbf{x}_{k+1} = S_{\lambda}$
4.	end for

*where $S_{\lambda}(x) = \operatorname{sign}(x) \cdot \max(|x| - \lambda, 0)$ is soft thresholding and t_k are step lengths

- reduces IO & works on "small" subsets of (block) rows in parallel
- only converges for special $\{\mathbf{A}, \, \mathbf{A}^H\}$ and tuned λ_k 's
- havocs continuation strategies & does not converge

relates to delicate "approximate" message passing theory [Montanari, '09]

Solution path

W. Yin. Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci., 3(4):856–877, 2010.

Relaxed sparsity objective

Consider $\lambda \to \infty$

- strictly convex objective known as "elastic" net in machine learning
- corresponds to Basis Pursuit for "large enough" λ
- corresponds to [Lorentz et. al., '14]
 - sparse Kaczmarz for single-row A_k 's
 - linearized Bregman for full A's

$\underset{\mathbf{x}}{\text{minimize}} \quad \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$ subject to Ax = b

RISKA – Randomized IS Kaczmarz Algorithm w/ linearized Bregman

1. for
$$k = 0, 1, \cdots$$

2. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$
3. $\mathbf{x}_{k+1} = S_\lambda (\mathbf{z}_{k+1})$
4. end for

where $t_k = \frac{\|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2}{\|\mathbf{A}_k^ (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2}$ are the step lengths

- exceedingly simple flexible "three line" algorithm
- gradient descend on the dual problem, which provably converges
- total different role for λ

line" algorithm blem, which provably converges

RISKA – Randomized IS Kaczmarz Algorithm w/ linearized Bregman

where $t_k = \frac{\|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2}{\|\mathbf{A}_k^ (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|^2}$ are the step lengths

- exceedingly simple flexible "three line" algorithm
- gradient descend on the dual problem, which provably converges
- total different role for λ

$$-t_k \mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$$
$$(\mathbf{z}_{k+1})$$

line" algorithm blem, which provably converges

Felix J. Herrmann and Xiang Li, "Efficient least-squares imaging with sparsity promotion and compressive sensing", Geophysical Prospecting, vol. 60, p. 696-712, 2012 Felix J. Herrmann, "Accelerated large-scale inversion with message passing", in SEG Technical Program Expanded Abstracts, 2012, vol. 31, p. 1-6.

RISTA Randomized Iterative Shrinkage Thresholding Algorithm

*where $S_{\lambda}(x) = \operatorname{sign}(x) \cdot \max(|x| - \lambda, 0)$ is soft thresholding and t_k are step lengths

- reduces IO & works on "small" subsets of (block) rows in parallel
- only converges for special $\{\mathbf{A}, \mathbf{A}^H\}$ and tuned λ_k 's
- havocs continuation strategies

$$-t_k \mathbf{A}_k^* (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$$

$$_k (\mathbf{z}_{k+1})$$

relates to delicate "approximate" message passing theory [Montanari, '09]

Solution paths

The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations. Lorenz, Dirk A.; Schöpfer, Frank; Wenger, Stephan. eprint arXiv:1309.2094

Extension – inconsistent systems

 $\begin{array}{ll} \min_{\mathbf{x}} & \lambda \| \mathbf{x} \\ \text{subject to} & \| \end{array}$

via projections onto norm balls

1.	for $k = 0, 1, \cdots$
2.	$\mathbf{z}_{k+1} = \mathbf{z}_k$
3.	$\mathbf{x}_{k+1} = S_{\lambda}$
4.	end for

*where $\mathcal{P}_{\sigma}(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k) = \max\{0, 1 - \frac{\sigma}{\|\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k\|}\} \cdot (\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$

•

$$\begin{aligned} \mathbf{x} \|_{1} &+ \frac{1}{2} \|\mathbf{x}\|^{2} \\ \|\mathbf{A}\mathbf{x} - \mathbf{b}\| &\leq \sigma \end{aligned}$$

$$-t_k \mathbf{A}_k^* \mathcal{P}_{\sigma}(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$$
$$(\mathbf{z}_{k+1})$$

Osher, S., Mao, Y., Dong, B., Yin, W.: Fast Linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8, 93–111 (2010)

Role of threshold

- solution corresponds to BP (or BPDN)
- difficult to solve (like $\lambda \rightarrow 0^+$ for ISTA) thresholded components first step guaranteed to be in support

- iterations "auto tune" and do not wander off too far from optimal Pareto curve
- when threshold too large RISTA still makes progress
- room for acceleration w/ kicking techniques

Application

Least-squares (RTM) migration:

- too expensive to invert
- can we invert by touching data once?

Fast SPLSM w/ CS -w/randomized source subsets

 $\underset{\mathbf{x}}{\operatorname{minimize}} \quad \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$ subject to $\sum_{i} \|\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{q}_{ij}) \mathbf{C}^* \mathbf{x} - \delta \mathbf{d}_{ij}\| \leq \sigma$ ij

By iterating

1. for
$$k = 0, 1, \cdots$$

2. $\Omega \in [1 \cdots n_f], \Sigma \in [1 \cdots n_s]$ for $\#\Omega \ll n_f, \#\Sigma \ll n_s$
3. $\mathbf{A}_k = \{\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \bar{\mathbf{q}}_{ij})\mathbf{C}^*\}_{i \in \Omega, j \in \Sigma}$ with $\bar{\mathbf{q}}_{ij} = \sum_{l=1}^{n_s} w_l \mathbf{q}_{i,l}$
4. $\mathbf{b}_k = \{\delta \bar{\mathbf{d}}_{ij}\}_{i \in \Omega, j \in \Sigma}$ with $\delta \bar{\mathbf{d}}_{ij} = \sum_{l=1}^{n_s} w_l \delta \mathbf{d}_{i,l}$
5. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* \mathcal{P}_\sigma(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$
5. $\mathbf{x}_{k+1} = S_\lambda(\mathbf{z}_{k+1})$
6. end for

Fast SPLSM w/ CS - experimental setup

Data:

- ► 320 sources and receivers
- ► 72 frequency slices ranging from 3 12 Hz
- $\delta \mathbf{d} = \mathbf{F}(\mathbf{m}) \mathbf{F}(\mathbf{m}_0)$, generated with separate modeling engine

Experiments:

- one pass through the data with different batch/block sizes
- simultaneous vs sequential shots
- In no source estimation use correct source for linearized inversions

• choose λ according to $\max(t_1 \cdot \mathbf{A}_1^* \mathbf{b}_1)$ and number of iterations

Fast SPLSM w/ CS – 360 iterations, each w/ 8 frequencies/sim. shots

0

0

5000 L

10000 Lateral distance [m]

Fast SPLSM w/ CS – 90 iterations, each w/ 16 frequencies/sim. shots

ເ ຍູ 1000 ຊີ 2000 3000

0

5000 Later

0

10000 Lateral distance [m]

Fast SPLSM w/ CS – 23 iterations, each w/ 32 frequencies/sim. shots

0

0

5000 Later

10000 Lateral distance [m]

Fast SPLSM w/ CS – 90 iterations, each w/ 16 frequencies/sim. shots

ເ ຍູ 1000 ຊີ 2000 3000

0

5000 Later

0

10000 Lateral distance [m]

Fast SPLSM w/ CS – 90 iterations, each w/ 16 frequencies/sequential shots

[_____1000 ຊີ 2000 3000

0

0

5000 La

10000 Lateral distance [m]

Ning Tu, Aleksandr Y. Aravkin, Tristan van Leeuwen, Tim T.Y. Lin, and Felix J. Herrmann, "Source estimation with multiples fast ambiguity-resolved seismic imaging". 2015

Fast SPLSM w/ CS - on-the-fly source estimation

 $\underset{\mathbf{x}}{\operatorname{minimize}} \quad \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x}\|^2$ subject to $\sum_{i,j} \|\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{q}_{ij}) \mathbf{C}^* \mathbf{x} - \delta \mathbf{d}_{ij}\| \leq \sigma$

By iterating

1. for
$$k = 0, 1, \cdots$$

2. $\Omega \in [1 \cdots n_f], \Sigma \in [1 \cdots n_s]$ for $\#\Omega \ll n_f, \#\Sigma \ll n_s$
3. $\mathbf{A}_k = \{\nabla \mathbf{F}_{ij}(\mathbf{m}_0, \mathbf{s}_i \bar{\mathbf{q}}_{ij}) \mathbf{C}^*\}_{i \in \Omega, j \in \Sigma}$ with $\bar{\mathbf{q}}_{ij} = \sum_{l=1}^{n_s} w_l \mathbf{q}_{i,l}$
4. $\mathbf{b}_k = \{\delta \bar{\mathbf{d}}_{ij}\}_{i \in \Omega, j \in \Sigma}$ with $\delta \bar{\mathbf{d}}_{ij} = \sum_{l=1}^{n_s} w_l \delta \mathbf{d}_{i,l}$
5. $s_i = \frac{\sum_{j \in \Sigma} \langle \delta \bar{\mathbf{d}}_{i,j}, \nabla \mathbf{F}[\mathbf{m}_0, \bar{\mathbf{q}}_j] \mathbf{C}^* \mathbf{x} \rangle}{\sum_{j \in \Sigma} \langle \nabla \mathbf{F}[\mathbf{m}_0, \bar{\mathbf{q}}_j] \mathbf{C}^* \mathbf{x} \rangle}, \mathbf{A}_k = \{\nabla \mathbf{F}_{ij}(\mathbf{m}_0, s_i \bar{\mathbf{q}}_{ij}) \mathbf{C}^*\}_{i \in \Omega, j \in \Sigma}$
6. $\mathbf{z}_{k+1} = \mathbf{z}_k - t_k \mathbf{A}_k^* \mathcal{P}_{\sigma}(\mathbf{A}_k \mathbf{x}_k - \mathbf{b}_k)$
7. $\mathbf{x}_{k+1} = S_{\lambda}(\mathbf{z}_{k+1})$
8. end for

Fast SPLSM w/ source estimation - experimental setup

Data:

- 320 sources and receivers
- 72 frequency slices ranging from 3 12 Hz
- $\delta \mathbf{d} = \nabla \mathbf{F} \delta \mathbf{m}$ inverse crime data

Experiments:

- shot ratios
- simultaneous sources
- choose λ according to $\max (t_1 \cdot \mathbf{A}_1^* \mathbf{b}_1)$
- source estimation with delta Dirac as initial guess
- estimated source scaled w.r.t. true source

one pass through the data with the same block size & different frequency-

Fast SPLSM w/ source estimation – 80 iterations, each w/ 72 frequencies/4 sim. shots & true source

(して) 1000 () 100 () 100

0

0

5000 Late

10000 Lateral distance [m]

Fast SPLSM w/ source estimation – estimated source

0

0

5000 La

10000 Lateral distance [m]

Fast SPLSM w/ source estimation – estimated source

Fast SPLSM w/ source estimation – 90 iterations, each w/ 16 frequencies/16 sim. shots w/ true source

0

0

5000 Late

10000 Lateral distance [m]

Fast SPLSM w/ source estimation – estimated source

0

0

5000 10000 Lateral distance [m]

Fast SPLSM w/ source estimation – estimated source

Fast SPLSM w/ source estimation – 90 iterations, each w/ 4 frequencies/64 sim. shots w/ true source

0

0

5000 Late

10000 Lateral distance [m]

Fast SPLSM w/ source estimation – estimated source

0

0

5000 Later

10000 Lateral distance [m]

Fast SPLSM w/ source estimation – estimated source

Observations

For known source function:

- quality is best for intermediate batch size & # of iterations results for randomly selected sources are of similar quality
- offers flexibility for parallelism

For unknown source function:

- source function is best estimated when # of frequencies is not too low • quality is similar to cases where the source function is known

Inversions can be carried out at cost (= batch size X # iterations) of ~1 RTM

Ning Tu and Felix J. Herrmann, "Fast imaging with surface-related multiples by sparse inversion", Geophysical Journal International, vol. 201, p. 304-317, 2015

Extension - imaging w/ surface-related multiples

$$f(\mathbf{x}, \boldsymbol{w}) \doteq \sum_{i \in \Omega} \sum_{j \in \Sigma} \| \delta \mathbf{\bar{d}}_{i,j} \|$$

Incorporate predictor of surface-related multiples via areal sources

$-\nabla \mathbf{F}[\mathbf{m}_0, \mathbf{s}_i \mathbf{\bar{q}}_j - \delta \mathbf{\bar{d}}_{i,j}] \mathbf{C}^* \mathbf{x} \|_2^2$

True image

RTM w/ multiples

Fast SPLSM w/ multiples by SPGI1

Fast SPLSM w/ multiples by RISKA

Bottom line – what you need

Access to $\{\mathbf{A}, \mathbf{A}^H\}$ or $\{\mathbf{A}^H, \mathbf{A}^H\mathbf{A}\}$

- migration, demigration or migration, Gauss-Newton Hessian
- norms for residual & gradient

Ability to subsample data

- randomized supershots or randomly selected shots in RTM
- or randomized traces (source/receiver) pairs in Kirchhoff migration

Some idea of max entry of $\mathbf{A}_k^* \mathbf{b}_k$

$\mathbf{A}^{H}\mathbf{A}$

nly selected shots in RTM eiver) pairs in Kirchhoff migration

Conclusions & extensions

Algorithm:

- simple, converges & has very few tuning parameters
- offers maximal flexibility for

 - extensions such as source estimation & imaging w/ multiples -
 - other overdetermined problems such as AVO
- gets hifi/high-resolution images touching the data only once

Simple structure also offers flexibility to do

- adaptive sampling
- on-line recovery while randomized data streams in

- implementations that strike a balance between data- and model-space parallelism

John "Ernie" Esser (May 19, 1980 – March 8, 2015)

Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Subsalt Ltd, WesternGeco, and Woodside.

ch Council of Canada Discovery

