Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Time-domain FWI in TTI media Philipp Witte, Felix J. Herrmann, October 26, 2015

Wednesday, 28 October, 15

Introduction

Seismic inversion with field data: requires anisotropic modeling!

ε=0.25, δ=0, θ=45[°]

ε**=0**, δ**=0.4**, θ**=30**⁰

Introduction

Anisotropy is an issue in field data applications and caused by thin sedimentary layers below signal wavelength

- fractures, faults
- rock textures itself
- influences especially travel times for long offsets

So far all SLIM modeling codes are acoustic or visco-elastic

- spacially varying anisotropy
- secondary goal: multi-parameter FWI

primary goal: extend existing modeling/inversion codes to include

(Backus, 1962, Long-wave elastic anisotropy produced by horizontal layering)

Recap of our time-domain modeling engine

Acoustic, isotropic wave equation in continuous form

discretized with 2nd order leap frog in time 2nd or 4th order FD method for the Laplacian

$$7^2u = q$$

Recap of our time-domain modeling engine

Matrix based discretized wave equation: $\mathbf{A}_1 \mathbf{u}^{k+1} + \mathbf{A}_2 \mathbf{u}^k +$ with:

$$\mathbf{A}_1 = \operatorname{diag}(\frac{\mathbf{m}}{\Delta t})$$

$$\mathbf{A}_3 = \operatorname{diag}(\frac{\mathbf{m}}{\bigtriangleup t^2})$$

$$\mathbf{A}_2 = -\mathbf{L} - 2\mathrm{diag}(\frac{\mathbf{m}}{\triangle t^2})$$

$$+\mathbf{A}_3\mathbf{u}^{k-1} = \mathbf{q}^{k-1}$$

$$\left(\frac{1}{2}\right)$$

 \mathbf{q}^k : Source wave field at time step k

Extension to anisotropy

ε=0.3, δ=0

6

Physical interpretation ϵ :

$$v_{p_x} = v_{p_z}\sqrt{1+2\epsilon}$$

> ratio of vertical velocity v_{p_z} to horizontal velocity v_{p_h}

(Tsvankin, 2001, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media)

Extension to anisotropy

ε=0, δ=0.4

Physical interpretation δ :

$$v_{p_n} = v_{p_z}\sqrt{1+2\delta}$$

angular dependence of v_{p_z} related to NMO velocity v_{p_n}

(Tsvankin, 2001, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media)

Tilted TI pure P-wave equation

2D anisotropic wave equation with PS methods

(Chunlei Chu, Brian K. Macy and Phil D. Anno, 2011)

$$c_{xz}\mathcal{F}^{-1}\left\{-k_xk_z\bar{U}\right\}$$

- k_x : spatial wavenumber in x-direction U: wavefield in frequency domain
- \mathcal{F} : 2D Fourier transform

Tilted TI pure P-wave equation

Model parameters contained in $c_{xx}, c_{zz}, c_{xxxx}, ...$

- parametrization in terms of velocities: v_z, v_h, v_{NMO}
- alternatively with Thomson parameters: v_z, ϵ, δ

Tilted TI pure P-wave equation

$$\operatorname{diag}\left(\frac{\mathbf{m}}{\Delta t^2}\right)\left(\mathbf{u}^{n+1} - 2\mathbf{u}^n\right)$$

 \leq

- $\mathbf{L} = \left\{ \operatorname{diag}(\mathbf{c}_{xx}) \mathbf{F}^* \operatorname{diag}(\mathbf{k}_1) + \operatorname{diag}(\mathbf{c}_{zz}) \mathbf{F}^* \operatorname{diag}(\mathbf{k}_2) \right\}$
 - $+ \operatorname{diag}(\mathbf{c}_{xz})\mathbf{F}^* \operatorname{diag}(\mathbf{k}_3) + \operatorname{diag}(\mathbf{c}_{xxzz})\mathbf{F}^* \operatorname{diag}(\mathbf{k}_4)$ $+ \operatorname{diag}(\mathbf{c}_{xxxx})\mathbf{F}^* \operatorname{diag}(\mathbf{k}_5) + \operatorname{diag}(\mathbf{c}_{zzz})\mathbf{F}^* \operatorname{diag}(\mathbf{k}_6)$
 - $+\mathrm{diag}(\mathbf{c}_{xxxz})\mathbf{F}^*\mathrm{diag}(\mathbf{k}_7)+\mathrm{diag}(\mathbf{c}_{xzzz})\mathbf{F}^*\mathrm{diag}(\mathbf{k}_8)\left\{\mathbf{F}\right\}$

- Fully discretized TTI equation with $(\mathbf{m}, \boldsymbol{\epsilon}, \boldsymbol{\delta}, \boldsymbol{ heta})$ parametrization $\mathbf{u}^n + \mathbf{u}^{n-1} - \mathbf{L}\mathbf{u}^n = \mathbf{q}^{n+1}$
 - same parametrization as for isotropic modeling, only that

Test the forward modeling code with comparison to analytic travel times under weak anisotropy assumption

$$\phi = \vartheta + \left(\delta + 2(\epsilon - \delta) \sin^2 \vartheta \right) \sin 2\vartheta \qquad \begin{array}{l} \phi: \text{ group an} \\ \vartheta: \text{ phase an} \\ \vartheta: \text{ phase an} \end{array}$$

$$\phi = \vartheta + \left(\delta + 2(\epsilon - \delta) \sin^2 \vartheta \right) \sin 2\vartheta \qquad \begin{array}{l} \phi: \text{ group an} \\ \vartheta: \text{ phase an} \\ \vartheta: \text{ phase an} \end{array}$$

Calculate wavefronts in homogeneous medium from group velocity and angle.

(Tsvankin, 2012, Seismic signatures and analysis of reflection data in anisotropic media: SEG, 3rd edition)

Isotropic medium after 3 seconds

13

VTI medium after 3 seconds (ϵ =0.2, δ =0)

14

VTI medium after 3 seconds (ϵ =0.1, δ =0.2)

One code for both isotropic and anisotropic modeling and inversion

- both modes use the same functions and operators
- only Laplacian changes for anisotropy
- easy to use via function overloading

 $data = Gen_data(m0, params, q, ani)$

anisotropic modeling with PS Laplacian

 $data = Gen_data(m0, params, q)$

isotropic modeling with **FD** Laplacian

Sensitivities

How does a change in $\delta m/\delta \epsilon$ affect the data?

$$(-1)^{-1} \left(\frac{\partial \mathcal{A}(\mathbf{m}, \boldsymbol{\epsilon})}{\partial \mathbf{m}} \mathbf{u} \right)^{-1} \left(\frac{\partial \mathcal{A}(\mathbf{m}, \boldsymbol{\epsilon})}{\partial \boldsymbol{\epsilon}} \mathbf{u} \right)$$

(Haber, 2013)

Sensitivities

Partial derivative of modeling operator w.r.t. slowness:

Laplacian drops out

partial derivative corresponds to discrete 2nd order time derivative

Sensitivities

Partial derivative of modeling operator w.r.t. epsilon:

requires partial derivative of the Laplacian w.r.t. epsilon

Gradient Test

Wednesday, 28 October, 15

19

FWI least squares objective function

$$\Phi(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_s} ||\mathbf{d}_i - \mathbf{P}_r \mathcal{A}|$$

 $\mathbf{d_i} : i_{th}$ observed shot record $\mathbf{P_r}$: Restriction operator $\mathbf{q_i} : i_{th}$ source

$\mathcal{A}(\mathbf{m})^{-1}\mathbf{q}_i \big\|_2^2$

Gradient w.r.t. squared slowness

Gradient w.r.t. squared slowness

$$\mathbf{J}_{\mathbf{m}}^{T} \delta \mathbf{d} = -\sum_{i=1}^{n_{s}} \left(\frac{\partial \mathcal{A}(\mathbf{m}, \boldsymbol{\epsilon})}{\partial \mathbf{m}} \mathbf{u}_{i} \right)^{T} \mathcal{A}(\mathbf{m}, \boldsymbol{\epsilon})^{-T} \mathbf{P}_{\mathbf{r}}^{T} \delta \mathbf{d}_{i}$$

Gradient w.r.t. epsilon (computed on the fly)

$$\mathbf{J}_{\boldsymbol{\epsilon}}^{T} \delta \mathbf{d} = -\sum_{i=1}^{n_{s}} \left(\frac{\partial \mathcal{A}(\mathbf{m}, \boldsymbol{\epsilon})}{\partial \boldsymbol{\epsilon}} \mathbf{u}_{i} \right)^{T} \mathcal{A}(\mathbf{m}, \boldsymbol{\epsilon})^{-T} \mathbf{P}_{\mathbf{r}}^{T} \delta \mathbf{d}_{i}$$

The FWI gradients have to pass the adjoint test:

- operators need to satisfy

$||\delta \mathbf{d}^T \mathbf{J} \delta \mathbf{m} - \delta \mathbf{m}^T \mathbf{J}^T \delta \mathbf{d}|| < \epsilon$

• we only compute actions of \mathbf{J}, \mathbf{J}^T , never the matrices itself to ensure they are true adjoints, the migration/demigration

Synthetic example: FWI on BG model

Generate data with anisotropic modeling

- Invert for squared slowness only: with correct and wrong anisotropy invert for squared slowness and epsilon

Setup:

- 501 receivers (10 m distance), 99 sources (50 m distance) 2.4 s recording time (601 samples) • data generated with 15 Hz peak frequency

True velocity model

Epsilon model

Tilt angle

Initial velocity model

Initial epsilon model

0 0.5 Depth [km] 1.5 2 2 0 Lateral Position [km]

Final velocity model /w true anisotropy

0 0.5 Depth [km] 1.5 2 2 0 Lateral Position [km]

Final velocity model /w wrong anisotropy

0 0.5 Depth [km] 1.5 2 2 0 Lateral Position [km]

Final velocity model /w epsilon inversion

32

0 0.5 Depth [km] 1.5 2 2 0 Lateral Position [km]

Final velocity model /w true anisotropy

0 0.5 Depth [km] 1.5 2 2 0 Lateral Position [km]

Final velocity model /w wrong anisotropy

34

0 0.5 Depth [km] 1.5 2 2 0 Lateral Position [km]

Final velocity model /w epsilon inversion

Misfit

- Pseudo-spectral methods accurate but expensive
 8 FFTs for 2D, 22 for 3D in general case
- Possible alternative: Eigen-decomposition Pseudo-Spectral (EPS) method
 - derivative operator as integral operator

$$Lf(x) = \int_{a}^{b} K(x) dx$$

• Kernel function K(x,y) constructed from eigenfunctions of derivative operator

(Sandberg and Wojciechowskit, 2011, The EPS method: A new method for constructing pseudospectral derivative operators)

(x, y)f(y)dy

- Example for 1D first derivative operator
- Test function:

$$f(x) = e^{-100x^2}$$

2D derivative operators:

$$\mathbf{L_x} = \mathbf{D_{xx}} \otimes \mathbf{I_{zz}}$$

 $\mathbf{L} = \mathbf{L_x} + \mathbf{L_z}$

Model 2D wave equation (non regular grid)

EPS derivative operator:

- sampling
- accuracy in range of machine precision
- ▶ is a dense matrix
- requires special algorithms to be applied efficiently (e.g. partitioned) low rank representation)

(Sandberg and Wojciechowskit, 2011, The EPS method: A new method for constructing pseudospectral derivative operators)

Conclusion

Time-domain modeling and inversion code with matrix based operators:

- simple extension to anisotropy (2D TTI with PS method)
- exact Jacobians and adjoint Jacobians
- passing additional argument with Thomsen parameters
- run existing codes for RTM, LSRTM, FWI in anisotropic mode by first steps towards multi-parameter FWI

Outlook

Current issues:

- PS method is computationally expensive
- crosstalk/low epsilon sensitivity in multi-parameter FWI

Future steps

- alternate wave equation parametrization
- anisotropic LSRTM, FWI on field data sets

construction of EPS operators for mixed wavenumber terms required in TTI equation + fast application algorithms (HSS etc.)

Acknowledgements

Thank you for your attention!

https://www.slim.eos.ubc.ca

Research and Development Grant DNOISEII (CRDPJ 375142--08).

