Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Source separation for simultaneous towed-streamer acquisition via compressed sensing Haneet Wason

Wednesday, 28 October, 15

Source separation for simultaneous towed-streamer acquisition via compressed sensing Collaborators: Rajiv Kumar and Felix J. Herrmann

SLIM 🕂 **University of British Columbia**

Periodic vs. jittered marine acquisition

periodically sampled spatial grid

almost periodically sampled spatial grid (over/under acquisition, towed arrays)

randomly jittered sampled spatial grid

(Time-jittered acquisition, OBC/OBN)

[Wason and Herrmann, 2013] [Mansour et. al., 2012]

Conventional marine acquisition

shot 1

Ž

periodically sampled spatial grid

(s)

ຍ 2^{_-} E

5

Simultaneous marine acquisition

[over/under acquisition, towed arrays]

shot-time randomness - LOW

shot 2

shot 1

shot 3

100 120

Challenges

Source separation (or *deblending*) - recover individual datasets

Shot-time randomness

- low

[Candès and Donoho, 2000; Hennenfent and Herrmann, 2008; Herrmann, 2010]

Compressed sensing

Successful sampling & reconstruction scheme

- exploit structure via sparsifying transform - *fast decay* of "transform domain" coefficients
- sampling
 - randomly blended data *decreases* sparsity in "transform domain"
- optimization
 - via sparsity-promotion

[Candès and Plan, 2009; Oropeza and Sacchi, 2011]

Matrix completion

Successful reconstruction scheme

- exploit structure
 - *low-rank / fast decay* of singular values
- sampling
 - randomly blended data increases rank in "transform domain"
- optimization
 - via rank-minimization (nuclear norm-minimization)

[Kumar et. al., 2015a]

Low-rank structure

In which domain?

source-receiver or midpoint-offset

9

Wednesday, 28 October, 15

In which domain?

[frequency slice at 5 Hz]

source-receiver domain (with reciprocity)

midpoint-offset domain (with reciprocity)

Decay of singular values

low-rank in midpoint-offset domain

Rajiv Kumar, Haneet Wason and Felix J. Herrmann, 2015. "Source separation for simultaneous towed-streamer marine acquisition---a compressed sensing approach", Geophysics, 80, WD73-WD88.

Sampling scheme

sample to break the structure

random time delays break the structure

How to destroy the structure? - add random time delays

without delays

no missing traces!

with random delays (< 1s)

Decay of singular values [midpoint-offset domain]

random time delays increase the rank

Do high frequencies have low-rank structure?

Low vs. high frequency [source-receiver domain]

low frequency

high frequency

Low vs. high frequency [midpoint-offset domain]

low frequency

high frequency

Decay of singular values

low frequency

high frequency

Hierarchical semi-separable (HSS) representation

HSS representation

[Chandrasekaran et. al., 2006]

level - 1

level - 2

Decay of singular values of HSS sub-blocks

21

off-diagonal block 1 off-diagonal block 2 diagonal block 200 150

off-diagonal blocks have low-rank structure

Rank minimization

$$\min_{\mathbf{X}} rank(\mathbf{X}) s.t.$$

number of singular values of ${\bf X}$

for blended acquisition:

b : blended data

$$\mathcal{A} := \begin{bmatrix} \mathbf{MT_1S^H} & \mathbf{MT_2} \\ \uparrow & \uparrow \\ \mathbf{fime \ delay \ matrices} \end{bmatrix}$$

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \le \epsilon$

unblended data matrix

${}_{2}\mathbf{S}^{\mathbf{H}}$

Rank minimization

$$\min_{\mathbf{X}} rank(\mathbf{X}) s.t.$$

number of singular values of ${f X}$

expensive (search over all possible values of rank)

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \le \epsilon$

Rank minimization

$$\min_{\mathbf{X}} rank(\mathbf{X}) s.t.$$

number of singular values of \mathbf{X}

Nuclear-norm minimization

[Recht et. al., 2010]

sum of singular values of ${f X}$

expensive (search over all possible values of rank)

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \leq \epsilon$

convex relaxation of rank-minimization

Rank vs. Sparsity

rank-minimization (midpoint-offset domain)

2 4 3 Number of coefficients

x 10[¬]

Source separation results

Rank minimization vs. sparsity promotion

Blended data (w/ delay) - random time delays (< 1 sec) applied to both sources

blended shot = sou

27

Source separation - rank vs. sparsity

computation time (all data) = 5 vs. 62 hours; memory usage = 2.8 vs. 7.0 GB

source 1

rank (15.0 dB) sparsity (16.7 dB)

Wednesday, 28 October, 15

Simultaneous long offset acquisition

[adapted from Long et. al., 2013]

A. S. Long et. al., "Simultaneous long offset (SLO) towed streamer seismic acquisition", presented at the 75th EAGE Conference and Exhibition, June 2013.

Blended data (w/ delay) - random time delays (< 1 sec) applied to both sources

Source separation - rank vs. sparsity

computation time (all data) = 19 vs. 183 hours; memory usage = 6 vs. 12 GB

Rajiv Kumar, Haneet Wason and Felix J. Herrmann, 2015. "Source separation for simultaneous towed-streamer marine acquisition---a compressed sensing approach", *Geophysics*, 80, WD73-WD88.

Experiment summary – time (in hours), memory (in GB), average SNR (in dB)

	Over/under acquisition			Simultaneous long offset acquisition		
	time	memory	SNR*	time	memory	SNR*
sparsity	62	7.0	16.7	183	12.0	32.0, 29.4
rank	5	2.8	15.0, 14.8	19	6.0	29.4, 29.0

* average SNR for source 1, source 2

Summary

Source separation for low variability acquisition scenarios can be treated both as a sparsity-promoting & rank-minimization problem

Get comparable results for both separation techniques, however, the rank-minimization technique is computationally faster

Future work

Spectral gap analysis

- data with time delays
- data with time delays + missing traces

Source separation + trace interpolation for 3D seismic data

van den Berg, E., and Friedlander, M. P., 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31,890-912.

Candès, E. J., and Plan, Y., 2009, Matrix completion with noise, Proceedings of the IEEE, 98, 925-936. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., and Pals, T., 2006, A fast solver for HSS representations via sparse

matrices, SIAM Journal on Matrix Analysis Applications, 29(1), 67–81.

Donoho, D. L., 2006, Compressed sensing, IEEE Transactions Information Theory, 52, 1289–1306. Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered undersampling, Geophysics, 73, V19–V28.

Herrmann, F. J., 2010, Randomized sampling and sparsity: getting more information from fewer samples, Geophysics, 75, WB173-WB187.

Kumar, R., Da Silva, C., Akalin, O., Aravkin, A. Y., Mansour, H., Recht, B., and Herrmann, F. J., 2015a, Efficient matrix completion for seismic data reconstruction, *Geophysics*, 80, V97–V114. Kumar, R., Wason, H., and Herrmann, F. J., 2015b, Source separation for simultaneous towed-streamer marine acquisition --a compressed sensing approach, Geophysics, 80, WD73–WD88.

Mansour, H., Wason, H., Lin, T. T. Y., and Herrmann, F. J., 2012, Randomized marine acquisition with compressive sampling matrices: Geophysical Prospecting, 60, 648–662.

Oropeza, V., and Sacchi, M., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis, Geophysics, 76(3), V25-V32.

Recht, B., Fazel, M., and Parrilo, P. A., 2010, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Review, 52(3), 471–501.

Wason, H., and Herrmann, F. J., 2013, Time-jittered ocean bottom seismic acquisition, SEG Technical Program Expanded Abstracts, 32, 1–6.

Acknowledgements

Thank you for your attention!

This work was financially supported by SINBAD Consortium members BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions and Woodside; and by the Natural Sciences and Engineering Research Council of Canada via NSERC Collaborative Research and Development Grant DNOISEII (CRDPJ 375142-08).

