Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Comparative study of time-lapse FWI approaches Felix Oghenekohwo & Felix J. Herrmann

Wednesday, 28 October, 15

Motivation

Need for accurate migration velocity models for time-lapse seismic analysis e.g. NRMS measure

FWI in time-lapse might address some of the issues faced in 4D seismic

- acquisition geometry repeatability
- water column statics
- complex overburden changes

Main message

Review of current time-lapse FWI approaches

Present our joint time-lapse FWI method

- that leverages the shared information from the vintages
- that is relatively robust w.r.t to the starting model
- that is fairly stable in the presence of large acquisition gaps
- that can be extended to multiple surveys
- that can be easily implemented

- 'I method
- to the starting model
- conce of large acquisition of

Full-waveform inversion

Problem

- **d** : ${\cal F}$:
- lpha :
- **m** :

observed data forward modelling kernel source wavelet model parameters

Assume known source wavelet

Full-waveform inversion

Problem

- **d** : ${\cal F}$:
- **m**:

observed data forward modelling kernel model parameters

Standard FWI

Initialization, iteration k = 0: Compute gradient :

Update model- iteration @ k+1 :

Linearization + sparsity on update

$$\tilde{\mathbf{x}}^{k} = \arg\min_{\mathbf{x}} \frac{1}{2} \| \mathbf{d} - \mathcal{F}[\mathbf{m}^{k}; \mathbf{G}] \|$$

$$\mathbf{Q} = \text{source}$$

$$\mathbf{C} = \text{curvelet}$$

model update: $\mathbf{m}^{k+1} = \mathbf{m}^k + \mathbf{C}^T \mathbf{\tilde{x}}^k$

$\mathbf{Q} - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}] \mathbf{C}^T \mathbf{x} \|_2^2 \quad \text{s.t.} \quad \|\mathbf{x}\|_1 < \tau$

Linearization + sparsity on update

$$\tilde{\mathbf{x}}^{k} = \arg\min_{\mathbf{x}} \frac{1}{2} \| \mathbf{d} - \mathcal{F}[\mathbf{m}^{k}; \mathbf{Q}] \|$$

$$\mathbf{Q} = \text{source}$$

$$\mathbf{C} = \text{curvelet}$$

model update: $\mathbf{m}^{k+1} = \mathbf{m}^k + \mathbf{C}^T \mathbf{\tilde{x}}^k$

$\mathbf{Q} - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}] \mathbf{C}^T \mathbf{x} \|_2^2 \quad \text{s.t.} \quad \|\mathbf{x}\|_1 < \tau$

Computationally very expensive!!! with all the data

Xiang Li, Aleksandr Y. Aravkin, Tristan van Leeuwen, and Felix J. Herrmann, "Fast randomized full-waveform inversion with compressive sensing", *Geophysics*, vol. 77, p. A13-A17, 2012.

Fast randomized inversion

$$\tilde{\mathbf{x}}^{k} = \arg \min_{\mathbf{x}} \frac{1}{2} \| \underline{\mathbf{d}} - \mathcal{F}[\mathbf{m}^{k}; \underline{\mathbf{Q}}] - \nabla \mathcal{F}$$

$$\underline{\mathbf{Q}} = \mathbf{W}\mathbf{Q}$$

$$\underline{\mathbf{d}} = \mathbf{W}\mathbf{d}$$

$$\mathbf{W} : \text{matrix that encodes simultaneor}$$

$$\mathbf{model update:} \quad \mathbf{m}^{k+1} = \mathbf{m}^{k} + \mathbf{C}^{T}\tilde{\mathbf{x}}^{k}$$

\mathbf{Q}] - $\nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}] \mathbf{C}^T \mathbf{x} \|_2^2$ s.t. $\|\mathbf{x}\|_1 < \underline{\tau}$

Fast computations!!!

nultaneous or randomly selected shots

Time-lapse FWI approaches

Time-lapse FWI approaches Parallel difference

Start with similar initial model, given observed data:

Sequential difference

Start with baseline data and initial model: Inversion of \mathbf{d}_2 using \mathbf{m}_1 as starting model :

Estimate timelapse model :

 m_0, d_1, d_2 Invert for baseline and monitor separately : $\mathbf{m}_1, \mathbf{m}_2$ Estimate timelapse model : $d\mathbf{m} = \mathbf{m}_2 - \mathbf{m}_1$

> $\mathbf{m}_0, \mathbf{d}_1$ Invert for baseline : \mathbf{m}_1 \mathbf{m}_2 $d\mathbf{m} = \mathbf{m}_2 - \mathbf{m}_1$

Watanabe et al., 2004; Denli and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013)

Time-lapse FWI approaches Double difference or Differential FWI

minimize $\Delta \mathbf{d} := (\mathbf{d}_2 - \mathbf{d}_1) - (\mathcal{F}[\mathbf{m}_2] - \mathcal{F}[\mathbf{m}_1])$

Start with baseline data and initial model: $\mathbf{m}_0, \mathbf{d}_1$ Invert for baseline : \mathbf{m}_1 $\widetilde{\mathbf{d}_2} = \mathbf{d}_2 - \mathbf{d}_1 + \boldsymbol{\mathcal{F}}[\mathbf{m}_1]$ Construct composite data : Replace \mathbf{d}_2 with \mathbf{d}_2 obtain : \mathbf{m}_2 $d\mathbf{m} = \widetilde{\mathbf{m}_2} - \mathbf{m}_1$ Estimate timelapse model :

Watanabe et al., 2004; Denli and Huang, 2009; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013)

Time-lapse FWI approaches

Double difference or Differential FWI

Relies on accurately repeating the acquisition

Not quite conducive when the vintage noise are highly uncorrelated

minimize $\Delta \mathbf{d} := (\mathbf{d}_2 - \mathbf{d}_1) - (\mathcal{F}[\mathbf{m}_2] - \mathcal{F}[\mathbf{m}_1])$

Maharramov, M., & Biondi, B. (2015, June)

Time-lapse joint FWI approaches Robust joint FWI with TV regularization

 $\alpha \|\mathbf{M}_{1} \mathcal{F}[\mathbf{m}_{1}] - \mathbf{d}_{1}\|_{2}^{2} + \beta \|\mathbf{M}_{2} \mathcal{F}[\mathbf{m}_{2}] - \mathbf{d}_{2}\|_{2}^{2} +$ (1) $\gamma \|(\mathbf{M}_{2}^{s} \mathcal{F}[\mathbf{m}_{2}] - \mathbf{M}_{1}^{s} \mathcal{F}[\mathbf{m}_{1}]) - (\mathbf{M}_{2} \mathbf{d}_{2} - \mathbf{M}_{1} \mathbf{d}_{1})\|_{2}^{2} +$ (2) $\alpha_{1} \|\mathbf{W}_{1} \mathbf{R}_{1}(\mathbf{m}_{1} - \mathbf{m}_{1}^{prior})\|_{1} +$ (3) $\beta_{1} \|\mathbf{W}_{2} \mathbf{R}_{2}(\mathbf{m}_{2} - \mathbf{m}_{2}^{prior})\|_{1} +$ (4) $\delta \|\mathbf{W} \mathbf{R}(\mathbf{m}_{2} - \mathbf{m}_{1} - \Delta \mathbf{m}^{prior})\|_{1} +$ (5)

Our parallel versus joint inversion approach

Parallel FWI

for i = 1, 2 $\tilde{\mathbf{x}}_{i}^{k} = \arg\min_{\mathbf{x}_{i}} \frac{1}{2} \| \mathbf{d}_{i}^{k} - \mathcal{F}(\mathbf{m}_{i}^{k}) - \mathbf{x}_{i}^{k} \| \mathbf{d}_{i}^{k} - \mathcal{F}(\mathbf{m}_{i}^{k}) - \mathbf{x}_{i}^{k} \| \mathbf{d}_{i}^{k} - \mathbf{x}_{i}^{k} \| \mathbf{x}_{i}^$

 $m_{i}^{k+1} = m_{i}$

Objective: Invert for baseline, monitor; difference = baseline-monitor

Parallel inversion (uses the **fast** randomized inversion technique based on CS)

$$-\nabla \mathcal{F}(\mathbf{m}_{i}^{k}) \mathbf{C}^{T} \mathbf{x}_{i} \|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}_{i}\|_{1} < \tau_{i}^{k}$$
$$\mathbf{A}_{i} \quad \mathbf{x}_{i}$$

$$\mathbf{n}_i^k + \mathbf{C}^T \mathbf{\tilde{x}}_i^k$$

Dror Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Richard G. Baraniuk. An Information-Theoretic Approach to Distributed Compressed Sensing (2005).

 $\tilde{\mathbf{z}} = \arg\min_{\mathbf{z}} \|\mathbf{z}\|_1$ s.t. $\mathbf{b} = \mathbf{A}\mathbf{z}$

- Decompose vintage into common and innovations
- Timelapse vintages share a lot of common information
- DCS exploits the common or shared information
- Invert for common component and innovations

Joint FWI with distributed compressed sensing

$$\begin{aligned} \tilde{\mathbf{z}}_{k} &= \arg\min_{\mathbf{z}_{k}} \frac{1}{2} \|\mathbf{b}_{k} - \mathbf{A}_{k} \mathbf{z}_{k}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{z}_{k}\|_{1} < \tau^{k} \\ \mathbf{b}_{k} &= \begin{bmatrix} \mathbf{d}_{1}^{k} - \mathcal{F}(\mathbf{m}_{1}^{k}) \\ \mathbf{d}_{2}^{k} - \mathcal{F}(\mathbf{m}_{2}^{k}) \end{bmatrix} \\ \mathbf{A}_{k} &= \begin{bmatrix} \nabla \mathcal{F}(\mathbf{m}_{1}^{k}) \mathbf{C}^{T} & \nabla \mathcal{F}(\mathbf{m}_{1}^{k}) \mathbf{C}^{T} & \mathbf{0} \\ \nabla \mathcal{F}(\mathbf{m}_{2}^{k}) \mathbf{C}^{T} & \mathbf{0} & \nabla \mathcal{F}(\mathbf{m}_{2}^{k}) \mathbf{C}^{T} \end{bmatrix} \\ \mathbf{z}_{k} &= \begin{bmatrix} \mathbf{z}_{0}^{k} \\ \mathbf{z}_{1}^{k} \\ \mathbf{z}_{2}^{k} \end{bmatrix} \end{aligned}$$

 $\mathbf{m}_i^{k+1} = \mathbf{m}_i^k + \mathbf{C}^T (\mathbf{\tilde{z}}_0^k + \mathbf{\tilde{z}}_i^k)$

Synthetic example

True baseline

True monitor

True time-lapse

Parallel/Sequential/Joint inversion

Given a good starting model:

- assuming similar acquisition geometry
- assuming different acquisition geometry

Given a poor starting model In the presence of large acquisition gap in the monitor survey In noisy environment

geometry on geometry

Parallel/Sequential/Joint inversion

Given a good starting model:

assuming similar acquisition geometry

assuming different acquisition geometry

Given a poor starting model

In the presence of large acquisition gap in the monitor survey

In noisy environment

Experiment: part 1

Assuming similar geometry "good" starting model

Modeling/Inversion parameters

Data simulation:

- Models ocean bottom seismic acquisition
- 23 sources @ 250m, 113 receivers @ 50m spacing
- Ricker source wavelet @ 12Hz peak frequency
- ▶ 80 frequencies between 3 and 22.5Hz

Inversion:

- frequencies
- Maximum of 150 iterations of spgl1 per frequency batch

16 frequencies per batch, 9 batches in total with overlapping

Sequential inversion

Start monitor inversion with the baseline inversion result

Horizontal distance (km)

Time-lapse results

Sequential w/inverted base

36

	250	
	200	
	150	
	100	_
-	50	m/s
-	0	citv (
-	-50	/eloc
-	-100	
-	-150	
	-200	
	1	

05-0 /elocity (m/s) 100 -150 -200 -250

Experiment: part 2

Assuming similar geometry "poor" starting model

39

41

Sequential inversion

Start monitor inversion with the baseline inversion result

44

Time-lapse results

Sequential w/ inverted base

46

1		250	
		200	
		150	
		100	_
	-	50	m/s
	-	0	citv (
	-	-50	/elo
	-	-100	_
	-	-150	
		-200	
		1	

Observations

A good initial model drives the inversion results for the vintages and time-lapse model

with JRM is better than both approaches

Significant attenuation of the artifacts in the time-lapse model using JRM, which exploits the shared information in time-lapse

Sequential FWI is better than parallel FWI, however joint inversion

Assuming accurate baseline inversion result, and monitor data has a large acquisition gap

Initial model

FWI baseline monitor

50

Assuming 1000m gap in the monitor

Wednesday, 28 October, 15

Assuming 1500m gap in the monitor

Time-lapse results

Sequential

59

Joint

250	
200	
200	
150	
100	_
50	m/s
0	city (
-50	/eloc
-100	/
-150	
-200	

Conclusions

errors in the time-lapse difference.

Joint inversion based on DCS gives better time-lapse models.

Joint inversion with DCS can minimize the errors in time-lapse models caused by inaccurate initial models or/and missing data caused by large acquisition gaps.

Parallel or/and sequential FWI on time-lapse data is more prone to

- Larger acquisition gaps adversely affect the time-lapse difference.

Future work

- Extension to multiple vintages
- Explore the role of noise/other factors unaccounted for
- Implementation on a more realistic 3D-synthetic time-lapse data/ Field data

Acknowledgements

Thank you for your attention !!!

This work was financially supported by SINBAD Consortium members BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions and Woodside; and by the Natural Sciences and Engineering Research Council of Canada via NSERC Collaborative Research and Development Grant DNOISEII (CRDPJ 375142-08).

