Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Affordable omnidirectional image volumes extension to 3D

Rajiv Kumar, Tristan van Leeuwen and Felix J. Herrmann

SLIM University of British Columbia

Motivation

AVA analysis

local geological dip estimation

Velocity analysis

Targeted imaging

Creation of subsurface offset image volumes

Motivation

(storage & computation time)

Can not form full E but action on (random) vectors allows us to get information from all or subsets of subsurface points

Computation of full-subsurface offset volumes is prohibitively expensive in 3D

Given two-way wave equations, source and receiver wavefields are defined as $H(\mathbf{m})U = P_s^T Q$ $H(\mathbf{m})^*V = P_r^T D$

where

- - Q:source
 - D:data matrix
- - slowness **m** :

 $H(\mathbf{m})$: discretization of the Helmoltz operator

 P_s, P_r : samples the wavefield at the source and receiver positions

represents a common shot gather

Express image volume tensor for single frequency as a matrix

Organize wavefields in monochromatic data *matrices* where each column

 $E = UV^*$

sources

gridpoints

Too expensive to compute (storage and computational time)

Instead, probe volume with tall matrix $W = [\mathbf{w}_1, \ldots, \mathbf{w}_l]$

$$\widetilde{E} = EW = H^{-1}P_s^T Q D^* P_r H^{-1} W$$

where $\mathbf{w}_i = [0, \dots, 0, 1, 0, \dots, 0]$ represents single scattering points

Source / Receiver location

Extended images common image point gather, 3- 30 Hz

$\Delta \mathbf{x}$: Horizontal offset

 Δz : Vertical offset

Take-away message

Computational costs

Full subsurface offset extended images:

	# of PDE solves	"flops for correlations"
conventional	2Ns	$N_s \times N_h$
mat-vecs	2N _x	$N_s \times N_r$

$$N_s - #$$
 of sources
 $N_r - #$ of receivers
 $N_h - #$ of subsurface offsets
 $N_x - #$ of sample points

Take-away message

Computational costs

Full subsurface offset extended images:

	# of PDE solves	"flops for correlations"
conventional	2Ns	$N_s \times N_h$
mat-vecs	2N _×	$N_s \times N_r$

$$N_s - #$$
 of sources
 $N_r - #$ of receivers
 $N_h - #$ of subsurface offsets
 $N_x - #$ of sample points

We win when $N_x < N_s$!

Applications in 2D

AVA analysis

Reservoir characterization

Local geological dip estimation

Dip-angle gathers dipping layer model

density [kg/m³]

Dip angle gathers

Dip can be detected by measuring the stack-power normal to the dip

Dip angle gathers

Dip can be detected by measuring the stack-power normal to the dip

AVA dipping layer model

• Zoeppritz equation • Predicted response

Biondo & Symes, '04, Symes 2008, Sava & Vasconcelos, '11

conventional approach

 \star stand for element-wise multiplication

.*

Η'

Focusing propose method approach

***** matrix-matrix multiplication

$E \operatorname{diag}(\mathbf{x}) \approx \operatorname{diag}(\mathbf{x}) E$

Focusing

where \mathbf{x} represents horizontal, vertical or all offset.

Tristan van Leeuwen, Rajiv Kumar, and Felix J. Herrmann, "Affordable omnidirectional subsurface extended image volumes", preprint Geophysical Prospecting

Fast WEMVA w/ randomized probing

Measure the error in some norm

$\min_{\mathbf{m}} || E(\mathbf{m}) \mathbf{d}|$ m

 $||A||_{F}^{2} =$

$$\mathsf{iag}(\mathbf{x}) - \mathsf{diag}(\mathbf{x})E(\mathbf{m})||_2^2$$

The Frobenius norm can be estimated via randomized trace estimation : Avron and Toledo, 2011

$$= \operatorname{trace}(A^{T}A)$$

$$\approx \sum_{i=1}^{K} \mathbf{w}_{i}^{T} A^{T}A \mathbf{w}_{i} = \sum_{i=1}^{K} ||A \mathbf{w}_{i}||_{2}^{2}$$

Randomized probing reflection data

true model

initial model

Randomized probing reflection

• Exact

• different color represents different random realization

Lens Model

Vertical Trace

Lens Model common image gathers

true model

500

1000

1500

WEMVA

Ivan Vasconcelos and James Rickett, "Broadband extended images by joint inversion of multples blended wavefields", 2013, Geophysics

Targeted Imaging

Image only reservoir area

Re-datum data above the reservoir

Mitigate overburden artifacts

Layer model imaging thin-layer

Virtual Receiver location •

Experimental details

101 source (20 m spacing), 201 receivers (10 m spacing)
3-60 Hz
split-spread acquisition
recording length 4s, sampling interval 4ms
peak frequency 20 Hz
I node, 10 workers

Layer model common-image gather along z = 500

computational time ~ 4 min (proposed) v/s 10 hrs (classical)

Layer model comparison (modelled versus virtual source)

Extension to 3D

Impediments

No direct solver for Helmholtz

iterative solver

Limited budget

in terms of # of wave-equation to solve

Practically impossible to form full subsurface image volume in 3D!

I-Layer model

Experimental details

2500 sources (50 m spacing), 625 receivers (100 m spacing) 5-15 Hz, 0.5 Hz sampling ocean-bottom acquisition node peak frequency 10 Hz 3 node, 7 workers

I-Layer model common image gather

computational time ~ 45 min (proposed) v/s 47 days (classical)

Conclusions

3D affordable

Enabler for

- automatic velocity model building (WEMVA)
- forming of densely sampled subsurface image volumes
 - Least-squares extended imaging (reduce artifacts)
- AVO/AVP analyses
- targeted imaging

Probings make computation of full subsurface-offset image gathers in

Future Work

Incorporate free-surface multiple in 3D

Extension to WEMVA in 3D

Extension to time-stepping

Target imaging in more complex environment

Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was financially supported by SINBAD Consortium members BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions and Woodside; and by the Natural Sciences and Engineering Research Council of Canada via NSERC Collaborative Research and Development Grant DNOISEII (CRDPJ 375142--08).

