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In memory of our dear friend:

John “Ernie” Esser (May 19, 1980 - March 8, 2015)
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Sparse Blind Deconvolution

Problem: Given n traces f
j

, estimate source wavelet w and sparse reflectivities x
j

Basic Model:
f
j

= x
j

⇤ w (BD)

Common
Assumptions:

w is short in time
w is approximately band limited
w is minimum phase or
impulsive

good initial guess for w
x
j

is statistically white
x
j

is sparse

Goal: Solve while only assuming sparsity of x
j

and short duration in w
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Surface Related Multiples

With a free surface boundary condition, density ⇢ = 0 at the surface.

Reflection coefficient is R =

v1⇢1�v0⇢0
v1⇢1+v0⇢0

= �1.

Primary reflections x
j

⇤ w act like a new source with the opposite sign when reflecting off the
surface:

f
j

= x
j

⇤ w � x
j

⇤ x
j

⇤ w + x
j

⇤ x
j

⇤ x
j

⇤ w �+...

which sums to

f
j

= x
j

⇤ w � x
j

⇤ f
j

(EPSI)
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Main points of this talk

We address that
the multiples can help resolving the scaling and shift ambiguities which are intrinsic in the
non-feedback system.
the l1/l2 penalty is more effective than the l1 norm.
the proposed rank lifting techniques can mitigate the local minimum potentially existing in
any bilinear optimization problems.
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Synthetic Linear Convolution Data

w (peak frequency 10Hz) x1

x1 ⇤ w f
j

= x1 ⇤ w + ⌘ , j = 1, ..., n
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Problem Setup

Without the sparsity assumption on x
j

, we are solving a feasibility problem for x
j

and w,
8
><

>:

f
j

= x
j

⇤ w + ⌘
j

X 2 RN⇥L

w = Bh B 2 RL⇥K , B =


I

K

0

�

The problem suffers from scaling, shift and other ambiguities.
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Fundamental Ill-Posedness – Scaling Ambiguity

x w x ⇤ w

10x w/10 x ⇤ w
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Fundamental Ill-Posedness – Shift Ambiguity

x w x ⇤ w

x(t+ .1) w(t� .1) x ⇤ w
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Fundamental Ill-Posedness – Other Ambiguity

x w x ⇤ w

x+ ⌘ w
(x+ ⌘) ⇤ w
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l
1

Regularization

With the l1 regularization to promote sparsity

min

x,w

�

2

kf � x ⇤ wk2 + kxk1 + �kwk

Global minimum is trivial: x ⇠ � [Benichoux, Vincent and Gribonval 2013]
Local minima may or may not be good

However, if w is known, then l1 regularization can be used to resolve sparse well separated
spikes [Claerbout and Muir 1973], [Santosa and Symes 1986], [Donoho 1992], [Dossal and
Mallat 2005]
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l
1

/l
2

Regularization

Replace the l1 norm with a l1/l2 penalty

min

x,w2span(B)

�

2

kf � x ⇤ wk2 + kxk1
kxk2

+ �kwk

Or the denoising version

min

x,w

log

kxk1
kxk2

subject to kf � x ⇤ wk2  ✏

w = Bh.
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Applications where l
1

/l
2

Can Outperform l
1

kxk1
kxk2 in two dimensions kxk1 in two dimensions

Blind image deconvolution [Krishnan, Tay and Fergus 2011], [Ji, Li, Shen and Wang 2012]
Sparse nonnegative least squares [Esser, Lou and Xin 2013]
Compressed sensing [Yin, Lou, He and Xin 2014]
Blind seismic deconvolution [Repetti, Pham, Duval, Chouzenoux and Pesquet 2014]
(They smooth an l1/l2 penalty and use alternating forward backward iterations)
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l
1

/l
2

Can Evaluate Partially Blind Wiener Deconvolution Results

Parameterize Ricker wavelet w(v) by peak frequency v

Use Wiener deconvolution to estimate x(v) such that f ⇡ x(v) ⇤ w(v)
Use l1 and l1/l2 to evaluate the quality of x(v)
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Connections to Classical Methods

Minimum Entropy Deconvolution [Wiggins 1978]

Maximizes kurtosis kx2k2
2

kx2k2
1

Like minimizing l1/l2 applied to x2 instead of to |x|

Variable Norm Deconvolution [Gray 1979]

Maximizes
P

j |xj |↵

(
P

j x

2
j )

↵
2

Kurtosis if ↵ = 4

kxk1

kxk2
if ↵ = 1, but we would want to minimize to promote sparsity for ↵ < 2
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l
1

/l
2

in the feedback system

Solve for w and x via the optimization problem:

min

[x1,...,xn],w2span(B)
F (x) (M)

subject to f
j

= x
j

⇤ w � x
j

⇤ f
j

, j = 1, ..., n.

Theorem 1 (Esser-Wang-Lin-Herrmann,2015).

If F (x) = kxk
l1 , then (M) has a scaling ambiguity for any x and w.

If F (x) = kxk
l1/kxkl2 , and supp(x) \ supp(x ⇤ x) = ;, then (M) has no scaling ambiguity.
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Solving the optimization problem

Original problem is non-convex non-differentiable

min

xj ,w

X

j

log

kx
j

k1
kx

j

k2

subject to

(
kf

j

� x
j

⇤ w + x
j

⇤ f
j

k2  ✏, j = 1, .., n

w = Bh.

Split x into positive and negative parts: x = x
p

� x
m

, x
p

� 0, x
m

� 0 so that |x| = x
p

+ x
m

min

xj,±,w

X

j

log

1T (x
j,+ + x

j,�)

kx
j,+ � x

j,�k2

subject to

8
><

>:

kf
j

� (x
j,+ � x

j,�) ⇤ w + (x
j,+ � x

j,�) ⇤ fjk2  ✏, j = 1, .., n

w = Bh

xT
j,+xj,� = 0.

The problem now is differentiable with Lipschitz continuous gradient.
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Method of Multipliers

min

x

F (x) s.t. h
i

(x) 2 C
i

Assume C
i

is convex and F , h
i

are differentiable with Lipschitz continuous gradient.

Find a saddle point of the augmented Lagrangian

L(x, p) = F (x) +
X

i

1

2�
i

kD
�iCi(pi + �

i

h
i

(x))k2 � 1

2�
i

kp
i

k2

where D
�iCi(p) = p�⇧

�iCi(p) (distance from p to �
i

C
i

)

by iterating
xk+1

= argmin

x

L(x, pk)

pk+1
i

= D
�iCi(p

k

i

+ �
i

h
i

(xk+1
))

In practice, approximate xk+1 with a quasi-Newton method such as LBFGS.
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Lifted Blind Deconvolution

w = Bh, f = x ⇤ w � f ⇤ x ! f = A
f

(hxT , x) for linear A.

Change variable from

2

4
h
x
p

x
m

3

5 to Z =

2

664

h
x
p

x
m

1

3

775

⇥
hT xT

p

xT
m

1

⇤
and the optimization problem

becomes

min

Z

F (Z)

subject to A
j

(Z) = y
j

, j = 1, ..., n
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Rank r Approximation

Lifting the rank of Z to r in the factorization

Z =

2

664

H
X

p

X
m

↵

3

775

⇥
HT XT

p

XT

M

↵T

⇤

and adding low rank promoting penalty k · k⇤ � k · k
F

min

Z

F (Z) + kZk⇤ � kZk
F

subject to ↵↵T

= 1 and A
j

(Z) = y
j

, j = 1, ..., n

Additional constraints and penalties:
Wavelet normalization khk = 1 via tr(HHT

) = 1

Optional regularization penalties k�Hk2
F
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Recovered Wavelet for n = 5, r = 1, SNR = 23.6

w |ŵ|

(included k�Hk2
F

to promote impulsive wavelet)
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Random Initial Guess

Initial h Initial x
p

Initial x
m
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Recovered Sparse Signal for n = 5, r = 1, SNR = 23.6

x1 f1
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Recovered Wavelet for n = 5, r = 1, SNR = 13.5

w |ŵ|

(included k�Hk2
F

to promote impulsive wavelet)
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Recovered Sparse Signal for n = 5, r = 1, SNR = 13.5

x1 f1
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Recovered Wavelet for n = 50, r = 1, SNR = 13.5

w |ŵ|
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Recovered Sparse Signal for n = 50, r = 1, SNR = 13.5

x1 f1
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Recovered Wavelet for n = 50, r = 1, SNR = 5.25

w |ŵ|
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Recovered Sparse Signal for n = 50, r = 1, SNR = 5.25

x1 f1
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Feedback system: Recovered Wavelet for n = 5, r = 1,
SNR = 20.8

w |ŵ|

(included k�Hk2
F

to promote impulsive wavelet)
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Feedback system: Recovered Sparse Signal for n = 5, r = 1,
SNR = 20.8

x1 f1
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Feedback system: Recovered Wavelet for n = 5, r = 1,
SNR = 9.82

w |ŵ|

(included k�Hk2
F

to promote impulsive wavelet)
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Feedback system: Recovered Sparse Signal for n = 5, r = 1,
SNR = 9.82

x1 f1
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Feedback system: Recovered Wavelet for n = 50, r = 1,
SNR = 14.2

w |ŵ|
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Feedback system: Recovered Sparse Signal for n = 50, r = 1,
SNR = 14.2

x1 f1
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Feedback system: Recovered Sparse Signal for n = 1, r = 1,
SNR = 50
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Feedback system: Recovered Sparse Signal for n = 1, r = 1,
SNR = 50
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Feedback system: Recovered Sparse Signal for n = 1, r = 2,
SNR = 50
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Feedback system: Recovered Sparse Signal for n = 1, r = 3,
SNR = 50
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Feedback system: Recovered Sparse Signal for n = 1, r = 4,
SNR = 50

x̂4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time

 

 

true

estimated

data

0 0.5 1 1.5 2 2.5 3
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t

40 / 42
Wednesday, 28 October, 15



Related References

[Cosse, Shank, and Demanet, 2015] (used lifting technique for FWI)

[Long, Solna, and Xin, 2013] (used full lifting to solve l1/l2).

[Repetti, Pham, and Duval, 2015] (another l1/l2 based solver for blind deconvolution)
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Conclusions and Future Work

Method of Multipliers implementation of a lifted l1/l2 sparsity constraint can solve EPSI
and standard 1D blind deconvolution problems
Works with a random initial guess
With more measurements, results improve and data can be noisier

Future Work:

implementation of the algorithm on 2D model.
Incorporate into multilevel EPSI algorithm at the coarsest level, where the EPSI
deconvolution problems are smaller but more difficult
Show EPSI model with l1/l2 removes shift ambiguity for sparse signals
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