Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Resolving Scaling Ambiguities with the L_1/L_2 Norm in a Blind **Deconvolution Problem with Feedback**

Oct 27, 2015

Ernie Esser, Rongrong Wang, Tim Lin, and Felix Herrmann

1/42

In memory of our dear friend:

John "Ernie" Esser (May 19, 1980 - March 8, 2015)

Sparse Blind Deconvolution

Problem: Given n traces f_j , estimate source wavelet w and sparse reflectivities x_j

Basic Model:

Common Assumptions:

- ${\ensuremath{\, \bullet \,}} w$ is short in time
- w is approximately band limited
- *w* is minimum phase or impulsive

Solve while only assuming sparsity of x_j and short duration in w

Goal:

$$f_j = x_j * w \tag{BE}$$

• good initial guess for wand limited • x_j is statistically white or • x_j is sparse

3 / 42

Surface Related Multiples

With a free surface boundary condition, density $\rho = 0$ at the surface. Reflection coefficient is $R = \frac{v_1 \rho_1 - v_0 \rho_0}{v_1 \rho_1 + v_0 \rho_0} = -1.$ Primary reflections $x_i * w$ act like a new source with the opposite sign when reflecting off the surface:

 $f_{i} = x_{i} * w - x_{i} * x_{j} * w + x_{i} * x_{j} * x_{j} * w - + \dots$

which sums to

 $f_j = x_j * w - x_j * f_j$

We address that

- the multiples can help resolving the scaling and shift ambiguities which are intrinsic in the non-feedback system.
- the l_1/l_2 penalty is more effective than the l_1 norm.
- the proposed rank lifting techniques can mitigate the local minimum potentially existing in any bilinear optimization problems.

Synthetic Linear Convolution Data

w (peak frequency 10Hz)

Without the sparsity assumption on x_j , we are solving a feasibility problem for x_j and w_j , $\mathcal{X} \in \mathbb{R}^{N imes L}$ $B \in \mathbb{R}^{L \times K}, \quad B = \begin{bmatrix} \mathbf{I}_K \\ \mathbf{0} \end{bmatrix}$

$$\begin{cases} f_j = x_j * w + \eta_j \\ w = Bh \end{cases}$$

The problem suffers from scaling, shift and other ambiguities.

Fundamental III-Posedness – Scaling Ambiguity

Fundamental III-Posedness – Shift Ambiguity

Fundamental III-Posedness – Other Ambiguity

With the l_1 regularization to promote sparsity

$$\min_{x,w} \frac{\lambda}{2} \|f - x *$$

• Global minimum is trivial: $x \sim \delta$ [Benichoux, Vincent and Gribonval 2013]

Local minima may or may not be good

However, if w is known, then l_1 regularization can be used to resolve sparse well separated spikes [Claerbout and Muir 1973], [Santosa and Symes 1986], [Donoho 1992], [Dossal and Mallat 2005]

$||w||^{2} + ||x||_{1} + \beta ||w||^{2}$

l_1/l_2 Regularization

Replace the l_1 norm with a l_1/l_2 penalty

Or the denoising version

$$x * w \|^2 + \frac{\|x\|_1}{\|x\|_2} + \beta \|w\|$$

 $\min_{x,w} \log \frac{\|x\|_1}{\|x\|_2}$ subject to $||f - x * w||_2 \le \epsilon$ w = Bh.

Applications where l_1/l_2 Can Outperform l_1

- Sparse nonnegative least squares [Esser, Lou and Xin 2013]
- Compressed sensing [Yin, Lou, He and Xin 2014]

Ind image deconvolution [Krishnan, Tay and Fergus 2011], [Ji, Li, Shen and Wang 2012]

Solution [Repetti, Pham, Duval, Chouzenoux and Pesquet 2014] (They smooth an l_1/l_2 penalty and use alternating forward backward iterations)

l_1/l_2 Can Evaluate Partially Blind Wiener Deconvolution Results

- Parameterize Ricker wavelet w(v) by peak frequency v
- Use Wiener deconvolution to estimate x(v) such that $f \approx x(v) * w(v)$
- Use l_1 and l_1/l_2 to evaluate the quality of x(v)

14/42

Connections to Classical Methods

Minimum Entropy Deconvolution [Wiggins 1978]

- Maximizes kurtosis $\frac{\|x^2\|_2^2}{\|x^2\|_1^2}$
- Like minimizing l_1/l_2 applied to x^2 instead of to |x|

Variable Norm Deconvolution [Gray 1979]

- Maximizes $\frac{\sum_{j} |x_{j}|^{\alpha}}{(\sum_{j} x_{j}^{2})^{\frac{\alpha}{2}}}$
- Kurtosis if $\alpha = 4$

• $\frac{\|x\|_1}{\|x\|_2}$ if $\alpha = 1$, but we would want to minimize to promote sparsity for $\alpha < 2$

l_1/l_2 in the feedback system

Solve for w and x via the optimization problem:

 $\min_{[x_1,\ldots,x_n],w\in\operatorname{span}(B)}F(x)$ subject to $f_j = x_j * w - x_j * f_j$, j = 1, ..., n.

Theorem 1 (Esser-Wang-Lin-Herrmann, 2015).

If $F(x) = ||x||_{l_1}$, then (M) has a scaling ambiguity for any x and w.

If $F(x) = \|x\|_{l_1} / \|x\|_{l_2}$, and $supp(x) \cap supp(x * x) = \emptyset$, then (M) has no scaling ambiguity.

16 / 42

Solving the optimization problem

Original problem is non-convex non-differentiable

$$\min_{x_j,w} \sum_j \log \frac{\|x_j\|_1}{\|x_j\|_2}$$

subject to
$$\begin{cases} \|f_j - x_j * w + x_j * f_j\|_2 \le \epsilon, j = 1, .., n\\ w = Bh. \end{cases}$$

Split x into positive and negative parts: x =

$$\min_{x_{j,\pm},w} \sum_{j} \log \frac{\mathbf{1}^{T}(x_{j,+} + x_{j,-})}{\|x_{j,+} - x_{j,-}\|_{2}}$$

subject to
$$\begin{cases} \|f_{j} - (x_{j,+} - x_{j,-}) * \\ w = Bh \\ x_{j,+}^{T} x_{j,-} = 0. \end{cases}$$

The problem now is differentiable with Lipschitz continuous gradient.

$$x_p - x_m$$
, $x_p \ge 0$, $x_m \ge 0$ so that $|x| = x_p + x_p$

$*w + (x_{j,+} - x_{j,-}) * f_j \|_2 \le \epsilon, j = 1, ..., n$

17 / 42

Method of Multipliers

Assume C_i is convex and F, h_i are differentiable with Lipschitz continuous gradient.

Find a saddle point of the augmented Lagrangian

$$L(x,p) = F(x) + \sum_{i} \frac{1}{2\delta_{i}} \|D_{\delta_{i}C_{i}}(p_{i} + \delta_{i}h_{i}(x))\|^{2} - \frac{1}{2\delta_{i}} \|p_{i}\|^{2}$$

where $D_{\delta_i C_i}(p) = p - \prod_{\delta_i C_i}(p)$ (distance from p to $\delta_i C_i$)

by iterating

$$x^{k+1} = \arg\min_{x} L(x, p^k)$$
$$p_i^{k+1} = D_{\delta_i C_i}(p_i^k + \delta_i h_i(x^{k+1}))$$

In practice, approximate x^{k+1} with a quasi-Newton method such as LBFGS.

- $\min_{x} F(x) \qquad \text{s.t.} \qquad h_i(x) \in C_i$

Lifted Blind Deconvolution

$$w = Bh, f = x * w - f * x \to f = \mathcal{A}_f(hx^T)$$

Change variable from $\begin{bmatrix} h \\ x_p \\ x_m \end{bmatrix}$ to $Z = \begin{bmatrix} h \\ x_p \\ x_m \\ 1 \end{bmatrix}$

becomes

 $\min_{Z} F(Z)$

(, x) for linear \mathcal{A} .

$\begin{bmatrix} h^T & x_p^T & x_m^T & 1 \end{bmatrix}$ and the optimization problem

subject to $\mathcal{A}_j(Z) = y_j, \quad j = 1, ..., n$

Rank r Approximation

Lifting the rank of Z to r in the factorization

$$Z = \begin{bmatrix} H \\ X_p \\ X_m \\ \alpha \end{bmatrix} \begin{bmatrix} H \\ A \end{bmatrix}$$

and adding low rank promoting penalty $\|\cdot\|_* - \|\cdot\|_F$

$$\min_{Z} F(Z) + \|.$$

subject to $\alpha \alpha^{T} = 1$ ar

Additional constraints and penalties:

- Wavelet normalization ||h|| = 1 via $tr(HH^T) = 1$
- Optional regularization penalties $\|\Gamma H\|_F^2$

$H^T \quad X_p^T \quad X_M^T \quad \alpha^T$

 $|Z||_{*} - ||Z||_{F}$

nd $\mathcal{A}_j(Z) = y_j, \quad j = 1, ..., n$

Recovered Wavelet for n = 5, r = 1, SNR = 23.6

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

 $|\hat{w}|$

Random Initial Guess

Recovered Sparse Signal for n = 5, r = 1, SNR = 23.6

 f_1

Recovered Wavelet for n = 5, r = 1, SNR = 13.5

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

 $|\hat{w}|$

Recovered Sparse Signal for n = 5, r = 1, SNR = 13.5

 f_1

Recovered Wavelet for n = 50, r = 1, SNR = 13.5

 $|\hat{w}|$

Recovered Sparse Signal for n = 50, r = 1, SNR = 13.5

 f_1

Recovered Wavelet for n = 50, r = 1, SNR = 5.25

 $|\hat{w}|$

Recovered Sparse Signal for n = 50, r = 1, SNR = 5.25

 f_1

Feedback system: Recovered Wavelet for n = 5, r = 1, SNR = 20.8

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

Feedback system: Recovered Sparse Signal for n = 5, r = 1, SNR = 20.8

Feedback system: Recovered Wavelet for n = 5, r = 1, SNR = 9.82

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

Feedback system: Recovered Sparse Signal for n = 5, r = 1, SNR = 9.82

Feedback system: Recovered Wavelet for n = 50, r = 1, SNR = 14.2

Feedback system: Recovered Sparse Signal for n = 50, r = 1, SNR = 14.2

35 / 42

Feedback system: Recovered Sparse Signal for n = 1, r = 1, SNR = 50

Wednesday, 28 October, 15

Feedback system: Recovered Sparse Signal for n = 1, r = 1, SNR = 50

Feedback system: Recovered Sparse Signal for n = 1, r = 2, SNR = 50

Wednesday, 28 October, 15

Feedback system: Recovered Sparse Signal for n = 1, r = 3, SNR = 50

Feedback system: Recovered Sparse Signal for n = 1, r = 4, SNR = 50

Wednesday, 28 October, 15

[Cosse, Shank, and Demanet, 2015] (used lifting technique for FWI) [Long, Solna, and Xin, 2013] (used full lifting to solve l_1/l_2).

- [Repetti, Pham, and Duval, 2015] (another l_1/l_2 based solver for blind deconvolution)

Conclusions and Future Work

- Method of Multipliers implementation of a lifted l_1/l_2 sparsity constraint can solve EPSI and standard 1D blind deconvolution problems
- Works with a random initial guess
- With more measurements, results improve and data can be noisier

Future Work:

- implementation of the algorithm on 2D model.
- Incorporate into multilevel EPSI algorithm at the coarsest level, where the EPSI deconvolution problems are smaller but more difficult
- Show EPSI model with l_1/l_2 removes shift ambiguity for sparse signals

42 / 42