Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

SPOT, distributed data, and you Curt Da Silva

University of British Columbia

Suppose that you want to solve a sparsity-promoting interpolation problem

$$\min_{x} \|x\|_{1}$$
 such that $RMx = b$

Suppose that you want to solve a sparsity-promoting interpolation problem

$$\min_{x} \lVert x \rVert_1$$

such that RMx = b

Sampling operator - restricts vector to sampled locations

Suppose that you want to solve a sparsity-promoting interpolation problem

$$\min_{x} \|x\|_{1}$$
 such that $RMx = b$

Sparsity basis - maps
(Curvelet, Fourier) coefficients
to physical domain

Suppose that you want to solve a sparsity-promoting interpolation problem

$$\min_{x} \|x\|_1$$

such that RMx = b

Suppose that you want to solve a sparsity-promoting interpolation problem

$$\min_{x} \lVert x \rVert_1$$
 Acquired data
$$\min_{x} \lVert x \rVert_1$$
 such that $RMx = b$

Algorithm - linearized Bregman

$$z_{k+1} = z_k - t_k A^T (Ax_k - b)$$
$$x_{k+1} = S_{\lambda}(z_{k+1})$$

A=RM - sampling + measurement operator

 t_k - step size

 $S_{\lambda}(x)$ - soft thresholding operator

$$S_{\lambda}(x) = \operatorname{sign}(x) \cdot \max(|x| - \lambda, 0)$$

Operations we need to perform

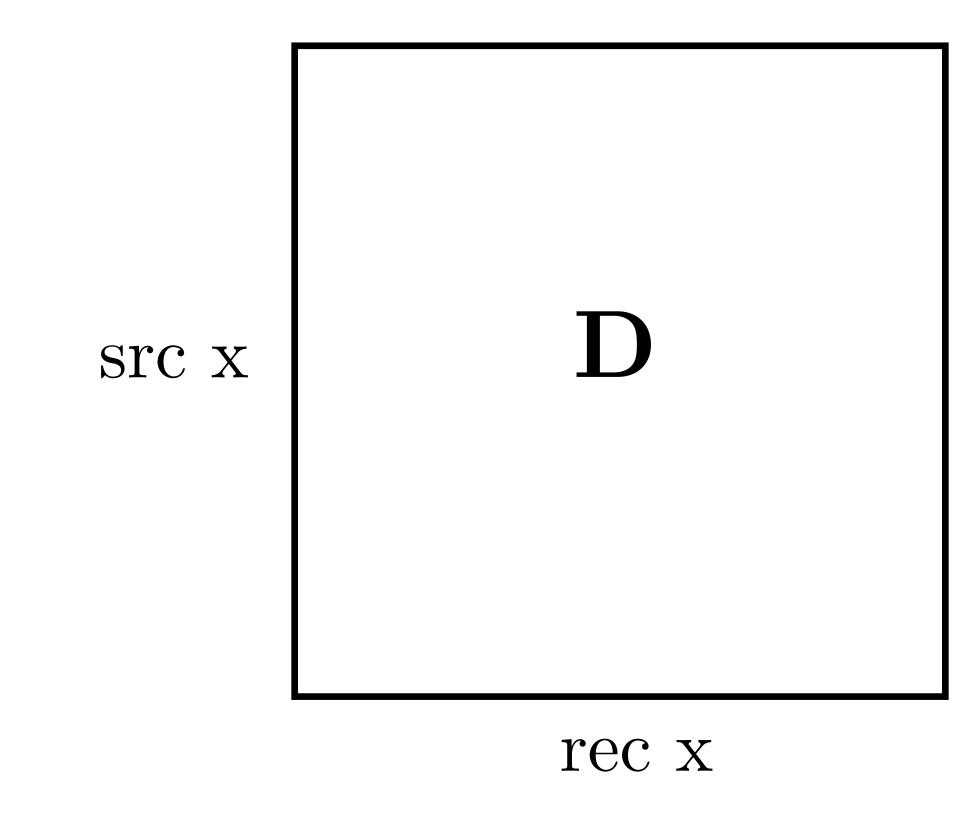
We need to repeatedly apply the forward transform

physical space \mapsto coefficient space

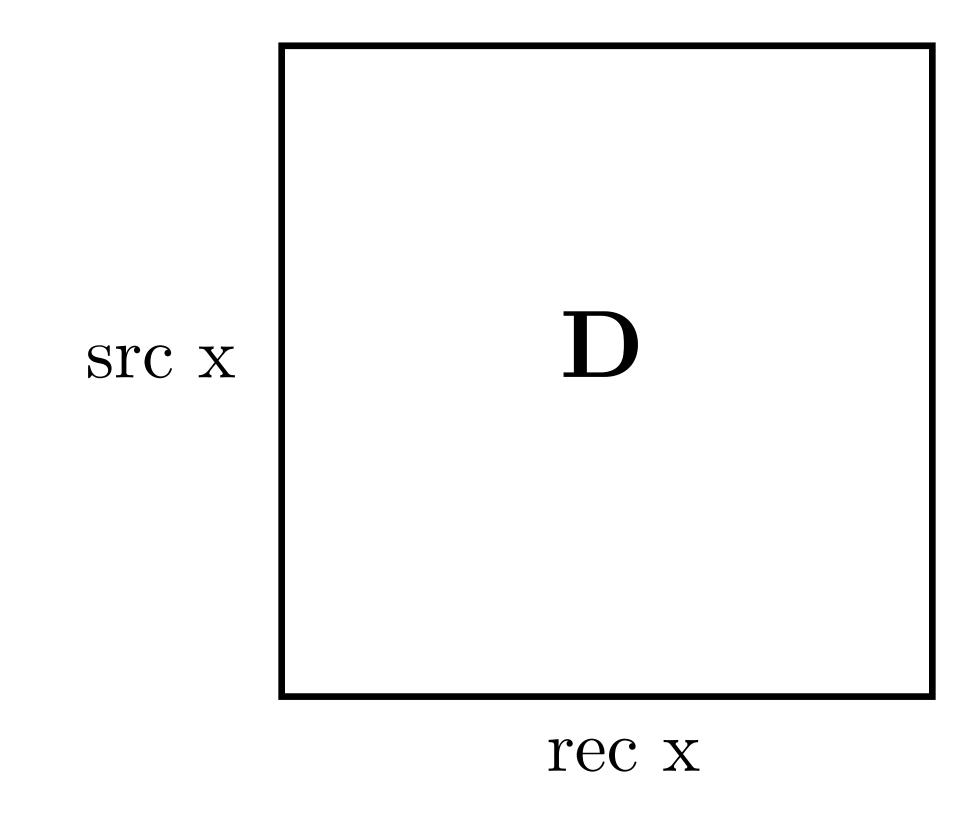
and apply the adjoint transform

coefficient space \mapsto physical space

Suppose we are working on two dimensional frequency slices



If ${\bf D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension



If ${\bf D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

 \mathbf{D}

src x

-1.0 + 0.0i	0.5 + 1.4i	0.5 - 1.4i
1.0 + 1.2i	0.5 - 0.9i	-1.5 - 0.3i
1.0 - 1.2i	-1.5 + 0.3i	0.5 + 0.9i

rec x

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

Applying the 1D Fourier transform to each column of D

 \mathbf{FD}

 $k_{
m src~x}$

0.6 + 0.0i	-0.3 + 0.5i	-0.3 + 0.5i
0.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
2.3 + 0.0i	1.2 + 2.0i	1.2 - 2.0i

rec x

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

Transposing the source and receiver dimensions

$$(\mathbf{FD})^T$$

rec x

0.6 + 0.0i	0.0 + 0.0i	2.3 + 0.0i
-0.3 + 0.5i	0.0 + 0.0i	1.2 + 2.0i
-0.3 + 0.5i	0.0 + 0.0i	1.2 - 2.0i

$$k_{
m src}$$

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

Applying the 1D Fourier transform to the columns of this new array

$$\mathbf{F}(\mathbf{FD})^T$$

 $k_{
m rec~x}$

0.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
1.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0+0.0i	4.0 + 0.0i

$$k_{
m src}$$
 x

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

Transpose the resulting array
This is our final result

$$(\mathbf{F}(\mathbf{FD})^T)^T$$

 $k_{
m src}$ x

0.0 + 0.0i	1.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0+0.0i	4.0 + 0.0i

$$k_{
m rec~x}$$

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

We can also write this as

 \mathbf{FDF}^T

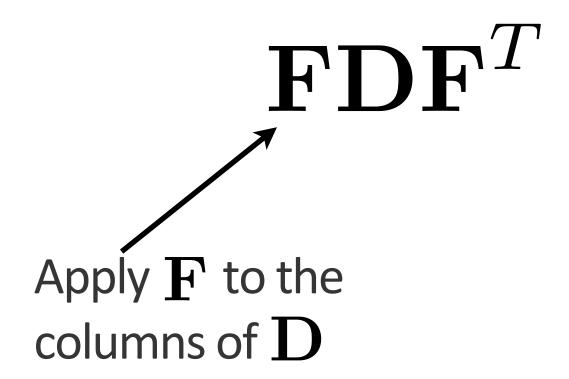
 $k_{
m src}$ x

0.0 + 0.0i	1.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0+0.0i	4.0 + 0.0i

 $k_{
m rec~x}$

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

We can also write this as



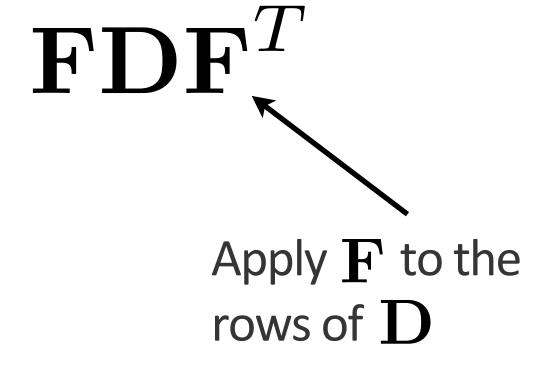
 $k_{
m src}$ x

0.0 + 0.0i	1.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0+0.0i	4.0 + 0.0i

 $k_{
m rec~x}$

If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension

We can also write this as



$$k_{
m src}$$
 x

0.0 + 0.0i	1.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0 + 0.0i	0.0 + 0.0i
0.0 + 0.0i	0.0+0.0i	4.0 + 0.0i

$$k_{
m rec~x}$$

Standard Matlab

```
op_fftsrc = @(x) fft(x)/sqrt(nsrc);
op_fftrec = @(x) fft(x)/sqrt(nrec);
op_transp = @(x) x.';
op_m = @(x) op_transp(op_fftrec(op_transp(opfftsrc(x))));
% transformed data
op_m(D);
```


Standard Matlab

That doesn't look too bad

• it's not intuitive to look at - hard to tell what's going on

What if our sparsity basis changes in one dimension?

hard to experiment

What if our data is distributed?

not clear what to do here

Standard Matlab

How do we get adjoints/inverses?

How can I deal with more than two dimensions?

Mathematically, we can express $\mathbf{F}\mathbf{D}\mathbf{F}^T$ as

$$(\mathbf{F} \otimes \mathbf{F}) \mathrm{vec}(\mathbf{D})$$

Mathematically, we can express \mathbf{FDF}^T as

$$(\mathbf{F} \otimes \mathbf{F}) \operatorname{vec}(\mathbf{D})$$

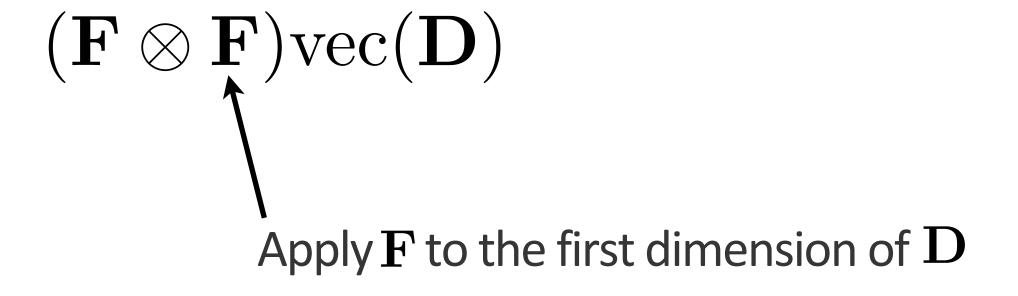
 $\mathbf{F} \otimes \mathbf{F}$ - kronecker product of \mathbf{F} and \mathbf{F}

 $vec(\mathbf{D})$ - reshape \mathbf{D} in to a vector

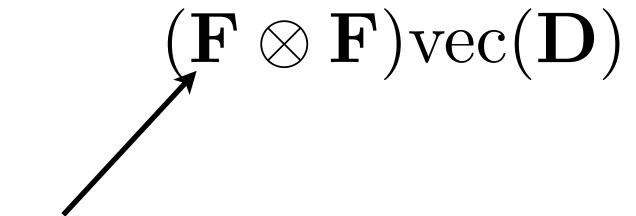
How you read this

$$(\mathbf{F}\otimes\mathbf{F})\mathrm{vec}(\mathbf{D})$$

How you read this

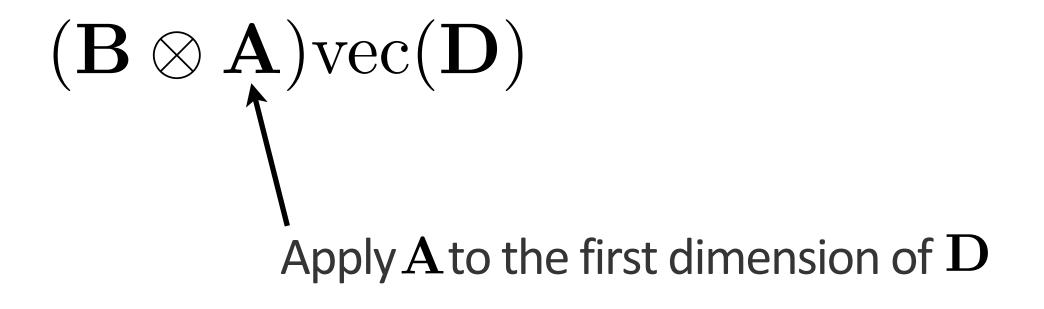


How you read this

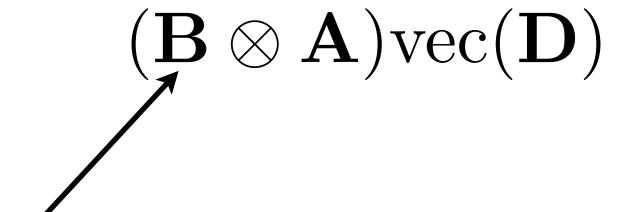


Apply ${f F}$ to the second dimension of ${f D}$

More generally



More generally



 $\mathsf{Apply}\mathbf{B}$ to the second dimension of D

Using the SPOT toolbox

```
A = opDFT(nsrc);
B = opDFT(nrec);
F = opKron(B,A);
% transformed data
F*vec(D);
```


Advantages

Code now looks like the math

- if you understand the underlying math, you understand what's happening
- adjoints, inverses automatically

Easy to change the operators in both dimensions

easier to experiment with different transforms

Handling distributed data is nearly identical to serial data

Using the SPOT toolbox - serial version

```
% D resides on the current node
A = opDFT(nsrc);
B = opDFT(nrec);
F = opKron(B,A);
% transformed data
F*vec(D);
```


Using the SPOT toolbox - serial version

```
% D is distributed along columns
A = opDFT(nsrc);
B = opDFT(nrec);
F = oppKron2Lo(B,A);
% transformed data - distributed
F*vec(D);
```


Actual Matlab code

```
% Construct sampling + measurement operators
Rsrc = opRestriction(nsrc,sampled_indices);
Rrec = opDirac(nrec);
R = opKron(Rrec,Rsrc);
Msrc = opDFT(nsrc); Mrec = opDFT(nrec);
M = opKron(Mrec,Msrc);
% Construct composite operators, subsampled data
A = R*M; b = R*vec(D);
threshold = @(x) sign(x) .* max(abs(x)-lambda,0);
```


Actual Matlab code

```
x = zeros(nsrc*nrec,1); z = zeros(nsrc*nrec,1);
for itr=1:nitr
   z = z - t*A'*(A*x-b);
   x = threshold(x);
end
```

Actual Matlab code

```
x = zeros(nsrc*nrec,1); z = zeros(nsrc*nrec,1);
for itr=1:nitr
   z = z - t*A'*(A*x-b);
   x = threshold(x);
end
```

Previous algorithm

$$z_{k+1} = z_k - t_k A^T (Ax_k - b)$$
$$x_{k+1} = S_{\lambda}(z_{k+1})$$

SPOT toolbox

Allows us to implement multidimensional operations easily and consistently

don't need to worry about data shuffling, parallelization, etc

Code matches the math

easier to understand, debug

All *matrix-free* - explicit matrices are never constructed, only matrix-vector products

SPOT Toolbox

Operations such as

A*B
A\B
A+B
c*A

are wrappers to functions you implement

 matrices never formed explicitly, but Matlab treats them as regular matrices

SPOT Toolbox

Lots of existing functionality

- Sums, products, inverses, diagonal operators, random matrices
- Fourier, Curvelet transform
- Parallel multilinear (Kronecker) products
- Demigration, migration, GN Hessian, Full Hessian operators in FWI
- Jacobian, GN Hessian for Hierarchical Tucker

Acknowledgements

https://www.slim.eos.ubc.ca/consortiumsoftware

This work was financially supported by SINBAD Consortium members BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions and Woodside; and by the Natural Sciences and Engineering Research Council of Canada via NSERC Collaborative Research and Development Grant DNOISEII (CRDPJ 375142--08).