Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia. # SPOT, distributed data, and you Curt Da Silva University of British Columbia Suppose that you want to solve a sparsity-promoting interpolation problem $$\min_{x} \|x\|_{1}$$ such that $RMx = b$ Suppose that you want to solve a sparsity-promoting interpolation problem $$\min_{x} \lVert x \rVert_1$$ such that RMx = b Sampling operator - restricts vector to sampled locations Suppose that you want to solve a sparsity-promoting interpolation problem $$\min_{x} \|x\|_{1}$$ such that $RMx = b$ Sparsity basis - maps (Curvelet, Fourier) coefficients to physical domain Suppose that you want to solve a sparsity-promoting interpolation problem $$\min_{x} \|x\|_1$$ such that RMx = b Suppose that you want to solve a sparsity-promoting interpolation problem $$\min_{x} \lVert x \rVert_1$$ Acquired data $$\min_{x} \lVert x \rVert_1$$ such that $RMx = b$ ## Algorithm - linearized Bregman $$z_{k+1} = z_k - t_k A^T (Ax_k - b)$$ $$x_{k+1} = S_{\lambda}(z_{k+1})$$ A=RM - sampling + measurement operator t_k - step size $S_{\lambda}(x)$ - soft thresholding operator $$S_{\lambda}(x) = \operatorname{sign}(x) \cdot \max(|x| - \lambda, 0)$$ ## Operations we need to perform We need to repeatedly apply the forward transform physical space \mapsto coefficient space and apply the adjoint transform coefficient space \mapsto physical space Suppose we are working on two dimensional frequency slices If ${\bf D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension If ${\bf D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension \mathbf{D} src x | -1.0 + 0.0i | 0.5 + 1.4i | 0.5 - 1.4i | |-------------|-------------|-------------| | 1.0 + 1.2i | 0.5 - 0.9i | -1.5 - 0.3i | | 1.0 - 1.2i | -1.5 + 0.3i | 0.5 + 0.9i | rec x If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension Applying the 1D Fourier transform to each column of D \mathbf{FD} $k_{ m src~x}$ | 0.6 + 0.0i | -0.3 + 0.5i | -0.3 + 0.5i | |------------|-------------|-------------| | 0.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | | 2.3 + 0.0i | 1.2 + 2.0i | 1.2 - 2.0i | rec x ## If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension Transposing the source and receiver dimensions $$(\mathbf{FD})^T$$ rec x | 0.6 + 0.0i | 0.0 + 0.0i | 2.3 + 0.0i | |-------------|------------|------------| | -0.3 + 0.5i | 0.0 + 0.0i | 1.2 + 2.0i | | -0.3 + 0.5i | 0.0 + 0.0i | 1.2 - 2.0i | $$k_{ m src}$$ If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension Applying the 1D Fourier transform to the columns of this new array $$\mathbf{F}(\mathbf{FD})^T$$ $k_{ m rec~x}$ | 0.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | |------------|------------|------------| | 1.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | | 0.0 + 0.0i | 0.0+0.0i | 4.0 + 0.0i | $$k_{ m src}$$ x If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension Transpose the resulting array This is our final result $$(\mathbf{F}(\mathbf{FD})^T)^T$$ $k_{ m src}$ x | 0.0 + 0.0i | 1.0 + 0.0i | 0.0 + 0.0i | |------------|------------|------------| | 0.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | | 0.0 + 0.0i | 0.0+0.0i | 4.0 + 0.0i | $$k_{ m rec~x}$$ If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension We can also write this as \mathbf{FDF}^T $k_{ m src}$ x | 0.0 + 0.0i | 1.0 + 0.0i | 0.0 + 0.0i | |------------|------------|------------| | 0.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | | 0.0 + 0.0i | 0.0+0.0i | 4.0 + 0.0i | $k_{ m rec~x}$ If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension We can also write this as $k_{ m src}$ x | 0.0 + 0.0i | 1.0 + 0.0i | 0.0 + 0.0i | |------------|------------|------------| | 0.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | | 0.0 + 0.0i | 0.0+0.0i | 4.0 + 0.0i | $k_{ m rec~x}$ If ${f D}$ our sparsity basis of choice is the 1D Fourier basis along each dimension We can also write this as $$k_{ m src}$$ x | 0.0 + 0.0i | 1.0 + 0.0i | 0.0 + 0.0i | |------------|------------|------------| | 0.0 + 0.0i | 0.0 + 0.0i | 0.0 + 0.0i | | 0.0 + 0.0i | 0.0+0.0i | 4.0 + 0.0i | $$k_{ m rec~x}$$ #### Standard Matlab ``` op_fftsrc = @(x) fft(x)/sqrt(nsrc); op_fftrec = @(x) fft(x)/sqrt(nrec); op_transp = @(x) x.'; op_m = @(x) op_transp(op_fftrec(op_transp(opfftsrc(x)))); % transformed data op_m(D); ``` #### **Standard Matlab** That doesn't look too bad • it's not intuitive to look at - hard to tell what's going on What if our sparsity basis changes in one dimension? hard to experiment What if our data is distributed? not clear what to do here #### Standard Matlab How do we get adjoints/inverses? How can I deal with more than two dimensions? Mathematically, we can express $\mathbf{F}\mathbf{D}\mathbf{F}^T$ as $$(\mathbf{F} \otimes \mathbf{F}) \mathrm{vec}(\mathbf{D})$$ Mathematically, we can express \mathbf{FDF}^T as $$(\mathbf{F} \otimes \mathbf{F}) \operatorname{vec}(\mathbf{D})$$ $\mathbf{F} \otimes \mathbf{F}$ - kronecker product of \mathbf{F} and \mathbf{F} $vec(\mathbf{D})$ - reshape \mathbf{D} in to a vector How you read this $$(\mathbf{F}\otimes\mathbf{F})\mathrm{vec}(\mathbf{D})$$ How you read this How you read this Apply ${f F}$ to the second dimension of ${f D}$ More generally More generally $\mathsf{Apply}\mathbf{B}$ to the second dimension of D ## Using the SPOT toolbox ``` A = opDFT(nsrc); B = opDFT(nrec); F = opKron(B,A); % transformed data F*vec(D); ``` ## Advantages Code now looks like the math - if you understand the underlying math, you understand what's happening - adjoints, inverses automatically Easy to change the operators in both dimensions easier to experiment with different transforms Handling distributed data is nearly identical to serial data ## Using the SPOT toolbox - serial version ``` % D resides on the current node A = opDFT(nsrc); B = opDFT(nrec); F = opKron(B,A); % transformed data F*vec(D); ``` ## Using the SPOT toolbox - serial version ``` % D is distributed along columns A = opDFT(nsrc); B = opDFT(nrec); F = oppKron2Lo(B,A); % transformed data - distributed F*vec(D); ``` #### Actual Matlab code ``` % Construct sampling + measurement operators Rsrc = opRestriction(nsrc,sampled_indices); Rrec = opDirac(nrec); R = opKron(Rrec,Rsrc); Msrc = opDFT(nsrc); Mrec = opDFT(nrec); M = opKron(Mrec,Msrc); % Construct composite operators, subsampled data A = R*M; b = R*vec(D); threshold = @(x) sign(x) .* max(abs(x)-lambda,0); ``` #### Actual Matlab code ``` x = zeros(nsrc*nrec,1); z = zeros(nsrc*nrec,1); for itr=1:nitr z = z - t*A'*(A*x-b); x = threshold(x); end ``` #### Actual Matlab code ``` x = zeros(nsrc*nrec,1); z = zeros(nsrc*nrec,1); for itr=1:nitr z = z - t*A'*(A*x-b); x = threshold(x); end ``` #### Previous algorithm $$z_{k+1} = z_k - t_k A^T (Ax_k - b)$$ $$x_{k+1} = S_{\lambda}(z_{k+1})$$ #### SPOT toolbox Allows us to implement multidimensional operations easily and consistently don't need to worry about data shuffling, parallelization, etc Code matches the math easier to understand, debug All *matrix-free* - explicit matrices are never constructed, only matrix-vector products #### SPOT Toolbox Operations such as A*B A\B A+B c*A are wrappers to functions you implement matrices never formed explicitly, but Matlab treats them as regular matrices #### SPOT Toolbox #### Lots of existing functionality - Sums, products, inverses, diagonal operators, random matrices - Fourier, Curvelet transform - Parallel multilinear (Kronecker) products - Demigration, migration, GN Hessian, Full Hessian operators in FWI - Jacobian, GN Hessian for Hierarchical Tucker ## Acknowledgements https://www.slim.eos.ubc.ca/consortiumsoftware This work was financially supported by SINBAD Consortium members BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions and Woodside; and by the Natural Sciences and Engineering Research Council of Canada via NSERC Collaborative Research and Development Grant DNOISEII (CRDPJ 375142--08).