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Model problem

Suppose that you want to solve a sparsity-promoting
interpolation problem

min|z]|;
L

such that RMx = b




Model problem

Suppose that you want to solve a sparsity-promoting
interpolation problem

min||z |4
X

such that RMx = b

e

Sampling operator -
restricts vector to sampled
locations
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Model problem

Suppose that you want to solve a sparsity-promoting
interpolation problem

min||z |4
X

such that RMx = b

Sparsity basis - maps
(Curvelet, Fourier) coefficients
to physical domain

A
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Model problem

Suppose that you want to solve a sparsity-promoting

interpolation problem
Coefficient vector

min||xz |4
X

such that RMx = b




Model problem

Suppose that you want to solve a sparsity-promoting
interpolation problem

Acquired data

min|l, /
such that RMx = b




Algorithm - linearized Bregman

<k+1 — Rk — tkAT(A.CIZk — b)

Tri1 = I\(Zkt11)

A = RM - sampling + measurement operator
L1 - step size

Sy (x) - softthresholding operator
Sx(x) = sign(x) - max(|x| — A, 0)




Operations we need to perform

We need to repeatedly apply the forward transform

physical space — coeflicient space

and apply the adjoint transform

coefficient space — physical space




Deftails

Suppose we are working on two dimensional frequency slices

SI'C X

rec X
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Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

SI'C X

rec X
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Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

D’ SI'C X

rec X

11

Wednesday, 28 October, 15



Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

Applying the 1D Fourier transform
to each column of D

FD Ksre x

rec X
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Deftails
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If D our sparsity basis of choice is the 1D Fourier basis

along each dimension

Transposing the source and receiver
dimensions

(FD)"

rec X

kSI’C X
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Deftails

14

If D our sparsity basis of choice is the 1D Fourier basis

along each dimension

Applying the 1D Fourier transform
to the columns of this new array

F(FD)"

krec X

kSI’C X
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Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

Transpose the resulting array
This is our final result

(F(FD)" )" Fsre x

krec X
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Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

We can also write this as

FDF'

Ksre x

krec X
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Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

We can also write this as

FDF'

fsre x
e

Apply F' to the
columns of D

krec X
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Deftails

If D our sparsity basis of choice is the 1D Fourier basis
along each dimension

We can also write this as

FDF'

Ksre x
\

Apply F' to the
rows of I)

krec X
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Standard Matlab

op fftsrc
op fftrec
Op transp

op m = @(x) op transp(op fftrec(op transp(opfftsrc(x))));

Q(x) fft(x)/sqrt(nsrc);
Q(x) fft(x)/sqgrt(nrec);
Q(x) x.';

% transformed data

op_m(D);
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Standard Matlab

That doesn’t look too bad
e it's not intuitive to look at - hard to tell what’s going on

What if our sparsity basis changes in one dimension?
e hard to experiment

What if our data is distributed?
¢ not clear what to do here
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Standard Matlab

How do we get adjoints/inverses?

How can | deal with more than two dimensions?

21




Kronecker Product

Mathematically, we can express FDF" as

(F ® F)vec(D)
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Kronecker Product

Mathematically, we can express FDF" as

(F ® F)vec(D)

F ® F - kronecker product of F and F
vec(D) - reshape D in to a vector
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Kronecker Product

How you read this

(F ® F)vec(D)
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Kronecker Product

How you read this

(F ® F)vec(D)

\

Apply F to the first dimension of D
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Kronecker Product

How you read this

/F ® F)vec(D)

Apply F' to the second dimension of D
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Kronecker Product

More generally

(B ® A)vec(D)

\

Apply A to the first dimension of D
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Kronecker Product

More generally

(B ® A)vec(D)

/

ApplyB to the second dimension of D
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Using the SPOT toolbox

A = opDFT(nsrc);

B = oOpDFT(nrec);

FF = opKron(B,A);

% transformed data
F*xvec(D);
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Advantages

Code now looks like the math

¢ if you understand the underlying math, you understand what's
happening

¢ adjoints, inverses automatically

Easy to change the operators in both dimensions
e easier to experiment with different transforms

Handling distributed data is nearly identical to serial data
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Using the SPOT toolbox - serial version

o©°

D resides on the current node
OpDFT (nsrc);

= OpDFT (nrec);

= OpKron(B,A);

transformed data

F*vec(D);

oo I I X
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Using the SPOT toolbox - serial version

o©°

D 1s distributed along columns
OpDFT (nsrc);

= OpDFT (nrec);

= oppKron2Lo(B,A);

transformed data - distributed
F*vec(D);

oc H W P
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Actual Matlab code

% Construct sampling + measurement operators
Rsrc = opRestriction(nsrc,sampled indices);
Rrec = opDirac(nrec);

R = opKron(Rrec,Rsrc);

Msrc = opDFT(nsrc); Mrec = oOpDFT(nrec);

M opKron (Mrec,Msrc) ;

% Construct composite operators, subsampled data
A = R*M; b = R*vec(D);

threshold = @(x) sign(x) .* max(abs(x)-lambda,0);
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Actual Matlab code

X=

end

34

zeros(nsrc*nrec,1l); z
for 1itr=l:nitr

Z
X

z — t*A’'*(A*x-b);
threshold(x);

zeros (nsrc*nrec,1l);
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Actual Matlab code

X = zeros(nsrc*nrec,l); z = zeros(nsrc*nrec,l);
for i1tr=l:nitr

z = 2 — t*A'*(A*x-b);

X = threshold(x);
end

Previous algorithm

Ll — ikAT(ACBk — b)

5&(2k+1)

k41

L1
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SPOT toolbox

Allows us to implement multidimensional operations easily and
consistently

e don’t need to worry about data shuffling, parallelization, etc

Code matches the math
e easier to understand, debug

All matrix-free - explicit matrices are never constructed, only
matrix-vector products
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SPOT Toolbox

Operations such as
A*B
A\B
A+B
C*A

are wrappers to functions you implement

® matrices never formed explicitly, but Matlab treats them as regular
matrices
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SPOT Toolbox

Lots of existing functionality
e Sums, products, inverses, diagonal operators, random matrices
e Fourier, Curvelet transform
e Parallel multilinear (Kronecker) products
e Demigration, migration, GN Hessian, Full Hessian operators in FWI
e Jacobian, GN Hessian for Hierarchical Tucker
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