Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Multi-parameter waveform inversion; exploiting the structure of penalty-methods Bas Peters June, 2014

Outline

- details

• Challenging problem example (same as I presented on Tuesday) + extra

• Waveform Reconstruction Inversion based multi-parameter algorithms

Wavefield Reconstruction Inversion [T. van Leeuwen & F.J. Herrmann, 2013] Data-misfit PDE-misfit Objective: tive: $\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum \|P\bar{\mathbf{u}}_{kl} - \mathbf{d}_{kl}\|_{2}^{2} + \frac{\lambda^{2}}{2} \|H_{k}(\mathbf{m})\bar{\mathbf{u}}_{kl} - \mathbf{q}_{kl}\|_{2}^{2}$ where $\bar{\mathbf{u}}_{kl} = \arg\min_{\mathbf{u}_{kl}} \left\| \begin{pmatrix} \lambda H_k(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u}_{kl} - \begin{pmatrix} \lambda \mathbf{q}_{kl} \\ \mathbf{d}_{kl} \end{pmatrix} \right\|_{\mathbf{q}_{kl}}$

and λ is a tradeoff parameter between PDE-fit and data-fit

Wavefield Reconstruction Inversion [T. van Leeuwen & F.J. Herrmann, 2013] Data-misfit PDE-misfit **Objective:**

$\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum \|P\bar{\mathbf{u}}_{kl} - \mathbf{d}_{kl}\|_2^2 + \frac{\lambda^2}{2} \|H_k(\mathbf{m})\bar{\mathbf{u}}_{kl} - \mathbf{q}_{kl}\|_2^2$

with gradient: $\nabla_{\mathbf{m}}\bar{\phi}_{\lambda} = \sum \lambda^2 G_{kl}(\mathbf{m}, \bar{\mathbf{u}})$ kl

$$(\mathbf{i}_{kl})^* (H_k(\mathbf{m}) \bar{\mathbf{u}}_{kl} - \mathbf{q}_{kl})$$

Non-linear waveform inversion

Example 1 (difficult):

- Lots of low frequencies missing, 24 frequency batches (15 iterations each) with intervals {5 6}, {6 7}, ..., {28 29} Hertz. Each interval contains 5 frequencies.
- We use 2 cycles through the batches: {5 6}, {6 7},...,{28 29}, {5 6}, {6 7},...,{28 29}, {5 6}, {6 7},...,{28 29}
- Inaccurate initial model
- 103 sources and receivers near the surface, spread over the whole domain (6km). Source & receiver interval: 55m. Max. offset 6km.
- Shortest wavelength: 290m @ 5Hz. and 50m @ 29 Hz.
- Used Two-metric projection with L-BFGS Hessian for optimization with boundconstraints. [Bertsekas, 1982 ; Gafni & Bertsekas, 1982 ; Schmidt, Kim & Sra, 2009]

Why do we need more sophisticated algorithms?

- We need upper and lower bounds on the velocity for numerical reasons:
 - lower bound: sufficient number of grid points per wavelength • upper bound: very long wavelengths not absorbed by the PML
- Bounds can also incorporate a priori geological information
- Numerical experiments so far show that bound constraints are required for WRI.
- For pure gradient-descent, the model update can be projected onto the bounds (box).

Why do we need more sophisticated algorithms?

- Projecting I-BFGS/Newton updates onto the bounds is dangerous.
- The projected update may point in the opposite direction
- Projected-Newton methods exist, but can be computationally intensive.
- Multiple cheap solutions exist; the two-metric-projection (TMP) method is used here (with I-BFGS Hessian).
- TMP is a general concept, which can be used in conjunction with different Hessian approximations.

Two-metric-projection

- direction
- Split Hessian approximation in free and restricted variables

• Project in a different norm than the one used for computing the update

after 1st frequency batch

Result FWI

after 2nd frequency batch

Result FWI

after last frequency batch

Result FWI

After 1st cycle

Result WRI, $\lambda = 1$

After 2nd cycle

Result WRI, $\lambda = 1$

True and final models

Result WRI, $\lambda = 1$

True model

True and final models

Result WRI with noise, $\lambda = 1$

True model

Initial phase-residuals

- Phase residuals computed using the Helmholtz equation in the start model
- WRI does not work with exact wavefields
- WRI uses the 'data-augmented' wavefield
- for λ very small, the phase residual will be 0.
- This will fit noise and cause ill-conditioning (not recommended!)
- Choose λ somewhat balanced (not difficult)

$$\bar{\mathbf{u}}_{kl} = \arg\min_{\mathbf{u}_{kl}} \left\| \begin{pmatrix} \lambda H_k(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u}_{kl} - \begin{pmatrix} \lambda \mathbf{q}_{kl} \\ \mathbf{d}_{kl} \end{pmatrix} \right\|$$

Phase residual in startmodel Ex2, 5 Hz.

Cross sections

Objective and model error

$$\bar{\phi}_{\lambda}(\mathbf{m}) = \frac{1}{2} \sum_{kl} \|P\bar{\mathbf{u}}_{kl} - \mathbf{d}_{kl}\|$$

- We can take a look at each part separately:
- Data-misfit can go up while iterating!

Model evolution

Model evolution

Effect of noise

Noise free

Noise

Observations about waveform inversion

- WRI performs much better for difficult problems
- WRI performs similar to FWI for not so difficult problems.
- Even for more difficult problems, only frequency continuation is required.
- No penalty parameter continuation was used, which can potentially increase quality and decrease the number of iterations.

 $\partial_k p + i\omega\rho v_k = f_k$ $\partial_r v_r + i\omega\kappa p = q$

- Difficulty 1: the compressibility and density occur in a coupled system of equations (or in 1 equation when the 2nd order form of the PDE is used)
- Difficulty 2: Different parameters can have very different magnitudes => Simple examples show >95.5% of the data can be fitted using only
- one of the two parameters.

Example: compute gradient of objective and naively plug into L-BFGS

Absolutely unsatisfactory result

- Multi-parameter problems of this sort have been solved with little generality
- Proposed solutions include:
 - sequential separate inversion
 - Structural similarity through regularization
 - Manual scaling of gradients corresponding to different parameters • Mitigate problems to limited extend by finding the 'best'?
 - parameterization
- All of these require fine-tuning and adaptation to different scenarios
- All of these were designed for gradient-based and quasi-Newton methods

- My approach: Use the actual Hessian
- The Hessian naturally provides information about 'scaling' and 'coupling'.
- Multi-parameter problem:

$$\min_{\mathbf{b},\boldsymbol{\kappa},\mathbf{u}} \frac{1}{2} \| P\mathbf{u} - \mathbf{d} \|_2^2 \quad \text{s.t.}$$

• Penalty formulation:

$$\phi_{\lambda}(\mathbf{b}, \boldsymbol{\kappa}, \mathbf{u}) = \frac{1}{2} \|P\mathbf{u} - \mathbf{d}\|_{2}^{2} + \frac{\lambda^{2}}{2} \|H(\mathbf{b}, \boldsymbol{\kappa})\mathbf{u} - \mathbf{q}\|_{2}^{2}$$
 [T. van Leeuwen & F.J. Herrmann, 2013

• Turns out to have additional benefits in this case

$$H(\mathbf{b}, \boldsymbol{\kappa})\mathbf{u} = \mathbf{q}$$

$$\phi_{\lambda}(\mathbf{b}, \boldsymbol{\kappa}, \mathbf{u}) = \frac{1}{2} \|P\mathbf{u} - \mathbf{d}\|_{2}^{2} + \frac{\lambda^{2}}{2} \|H(\mathbf{b}, \boldsymbol{\kappa})\mathbf{u} - \mathbf{q}\|_{2}^{2}$$

Solve the system (sparse)

Corresponding

$$\begin{pmatrix} \nabla_{\mathbf{u},\mathbf{u}}^{2}\phi_{\lambda} & \nabla_{\mathbf{u},\kappa}^{2}\phi_{\lambda} & \nabla_{\mathbf{u},\mathbf{b}}^{2}\phi_{\lambda} \\ \nabla_{\boldsymbol{\kappa},\mathbf{u}}^{2}\phi_{\lambda} & \nabla_{\boldsymbol{\kappa},\kappa}^{2}\phi_{\lambda} & \nabla_{\boldsymbol{\kappa},\mathbf{b}}^{2}\phi_{\lambda} \\ \nabla_{\boldsymbol{b},\mathbf{u}}^{2}\phi_{\lambda} & \nabla_{\mathbf{b},\kappa}^{2}\phi_{\lambda} & \nabla_{\mathbf{b},\mathbf{b}}^{2}\phi_{\lambda} \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{u}} \\ \delta_{\mathbf{k}} \\ \delta_{\mathbf{k}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \nabla_{\mathbf{u}}\phi_{\lambda} \\ \nabla_{\boldsymbol{\kappa}}\phi_{\lambda} \\ \nabla_{\mathbf{b}}\phi_{\lambda} \end{pmatrix}$$

• When we solve for the fields as before, $(\nabla_{\mathbf{u}}\phi_{\lambda}(\bar{\mathbf{u}}, \kappa, \mathbf{b}) = 0)$ we obtain

• Sparse-Dense splitting does not happen in the Lagrangian form.

write: $\begin{pmatrix} E & B \\ C & D \end{pmatrix}$

$$=0$$

$$\downarrow$$

$$\left(\nabla_{\kappa}\phi_{\lambda}\\\nabla_{\mathbf{b}}\phi_{\lambda}\right) - CE^{-1}\nabla_{\mathbf{u}}\phi_{\lambda}(\bar{\mathbf{u}},\kappa,\mathbf{b})$$

sparse dense

$$=0$$

$$\downarrow$$

$$(D - CE^{-1}B)\begin{pmatrix}\delta_{\kappa}\\\delta_{u}\end{pmatrix} = \begin{pmatrix}\nabla_{\kappa}\phi_{\lambda}\\\nabla_{b}\phi_{\lambda}\end{pmatrix} - CE^{-1}\nabla_{u}\phi_{\lambda}(\bar{u},\kappa,b)$$

$$\downarrow$$

$$\begin{pmatrix}\nabla_{\kappa,\kappa}^{2}\phi_{\lambda} & \nabla_{\kappa,b}^{2}\phi_{\lambda}\\\nabla_{b,\kappa}^{2}\phi_{\lambda} & \nabla_{b,b}^{2}\phi_{\lambda}\end{pmatrix}$$
We can use this as an approximate H

So far I used only the diagonal blocks, yielding a sparse, SPD matrix

$$\tilde{H} = \begin{pmatrix} \nabla_{\kappa,\kappa}^2 \phi_{\lambda} & 0 \\ 0 & \nabla_{\mathbf{b},\mathbf{b}}^2 \phi_{\lambda} \end{pmatrix} = \begin{pmatrix} G_{\kappa}^* G_{\kappa} & 0 \\ 0 & G_{\mathbf{b}}^* G_{\mathbf{b}} \end{pmatrix}$$

 $G_{\kappa} = \partial H(\mathbf{b}, \kappa) \bar{\mathbf{u}} / \partial \kappa$

- lessian

 $G_{\mathbf{b}} = \partial H(\mathbf{b}, \boldsymbol{\kappa}) \bar{\mathbf{u}} / \partial \mathbf{b}$

Algorithm 1 Waveform inversion with a sparse Hessian approximation.

while Not converged do 1. $\bar{\mathbf{u}} = \arg \min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda \mathbf{A}(\mathbf{b}, \kappa) \\ \mathbf{P} \end{pmatrix} \right\|$ 2. $\mathbf{G}_{\kappa}, \mathbf{G}_{\mathbf{b}}, \nabla_{\mathbf{b}} \bar{\phi}_{\lambda}, \nabla_{\kappa} \bar{\phi}_{\lambda} / / \mathbf{A}$ 3. $\mathbf{p}_{gn} = \tilde{\mathbf{H}}^{-1} \mathbf{g} / / \text{ Solve}$ 4. find steplength $\alpha / / \mathbf{A}$ 5. $\mathbf{m} = \mathbf{m} + \alpha \mathbf{p}_{gn} / / \mathbf{up}$ end

$$\begin{pmatrix} \lambda q \\ d \end{pmatrix} \Big\|_{2}$$
 // Solve
/ Form
/ Linesearch
pdate model

A reduced-space algorithm; example

A reduced-space algorithm; example

- Spare Hessian approximation seems to be quite effective
- Is it sufficient? Needs more experimenting...
- Alternatively, we can use a matrix-free Newton-CG algorithm including the dense part of the reduced Hessian.

sparse dense =0

$$(D - CE^{-1}B)\begin{pmatrix}\delta_{\kappa}\\\delta_{\mathbf{u}}\end{pmatrix} = \begin{pmatrix}\nabla_{\kappa}\phi_{\lambda}\\\nabla_{\mathbf{b}}\phi_{\lambda}\end{pmatrix} - CE^{-1}\nabla_{\mathbf{u}}\phi_{\lambda}(\bar{\mathbf{u}},\kappa,\mathbf{b})$$

Conclusions

- The use of the Hessian automatically scales the different parameter classes based on the PDE itself.
- Hessian information may turn multi-parameter inversion algorithms fully automatic.
- A quadratic-penalty formulation offers very cheap and effective Hessian approximations.
- Promising results using the multi-parameter WRI version.

Work in progress

- If you are willing to have more than 2 wavefields in memory, the door too many optimization algorithms is opened.
- For Lagrangian as well as penalty methods.
- Access to sparse Hessians, gradients without solving PDE's.
- Function evaluations do not require PDE solves either.

$$\begin{aligned} \varphi_{\lambda}(\mathbf{b}, \boldsymbol{\kappa}, \mathbf{u}) &= \frac{1}{2} \| P \mathbf{u} - \mathbf{d} \|_{2}^{2} + \frac{\lambda^{2}}{2} \| H(\mathbf{b}, \boldsymbol{\kappa}) \mathbf{u} - \mathbf{q} \|_{2}^{2} \\ \\ \frac{\langle \nabla_{\mathbf{u}, \mathbf{u}}^{2} \phi_{\lambda} | \nabla_{\mathbf{u}, \kappa}^{2} \phi_{\lambda} - \nabla_{\mathbf{u}, \mathbf{b}}^{2} \phi_{\lambda} \rangle}{\nabla_{\mathbf{\kappa}, \mathbf{u}}^{2} \phi_{\lambda} | \nabla_{\mathbf{\kappa}, \kappa}^{2} \phi_{\lambda} - \nabla_{\mathbf{\kappa}, \mathbf{b}}^{2} \phi_{\lambda} \rangle} \begin{pmatrix} \delta_{\mathbf{u}} \\ \delta_{\mathbf{\kappa}} \\ \nabla_{\mathbf{b}, \mathbf{u}}^{2} \phi_{\lambda} & \nabla_{\mathbf{b}, \kappa}^{2} \phi_{\lambda} - \nabla_{\mathbf{k}, \mathbf{b}}^{2} \phi_{\lambda} \end{pmatrix}} \begin{pmatrix} \delta_{\mathbf{u}} \\ \delta_{\mathbf{k}} \\ \nabla_{\mathbf{b}, \mathbf{b}} \phi_{\lambda} & \nabla_{\mathbf{b}, \kappa}^{2} \phi_{\lambda} - \nabla_{\mathbf{b}, \mathbf{b}}^{2} \phi_{\lambda} \end{pmatrix} \end{aligned}$$

• Update the fields instead of solving.

$$\phi_{\lambda}(\mathbf{b}, \boldsymbol{\kappa}, \mathbf{u}) = \frac{1}{2} \|P\mathbf{u} - \mathbf{d}\|_{2}^{2} + \frac{\lambda^{2}}{2} \|H(\mathbf{b}, \boldsymbol{\kappa})\mathbf{u} - \mathbf{q}\|_{2}^{2}$$
Newton step $\rightarrow \begin{pmatrix} \nabla_{\mathbf{u},\mathbf{u}}^{2}\phi_{\lambda} & \nabla_{\mathbf{u},\kappa}^{2}\phi_{\lambda} & \nabla_{\mathbf{u},\mathbf{b}}^{2}\phi_{\lambda} \\ \nabla_{\mathbf{\kappa},\mathbf{u}}^{2}\phi_{\lambda} & \nabla_{\mathbf{\kappa},\kappa}^{2}\phi_{\lambda} & \nabla_{\mathbf{\kappa},\mathbf{b}}^{2}\phi_{\lambda} \\ \nabla_{\mathbf{b},\mathbf{u}}^{2}\phi_{\lambda} & \nabla_{\mathbf{b},\kappa}^{2}\phi_{\lambda} & \nabla_{\mathbf{b},\mathbf{b}}^{2}\phi_{\lambda} \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{u}} \\ \delta_{\mathbf{\kappa}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \nabla_{\mathbf{u}}\phi_{\lambda} \\ \nabla_{\mathbf{\kappa}}\phi_{\lambda} \\ \nabla_{\mathbf{b}}\phi_{\lambda} \end{pmatrix}$

Acknowledgements

The SLIM students & postdocs

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Total SA, WesternGeco, and Woodside.

