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Randomized sampling without repetition in
time-lapse seismic surveys
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Randomized undersampling

- examples from indusiry (ConocoPhilips)

Deliberate & natural randomness in acquisition
(thanks to Chuck Mosher)

Compressive Sensing = Acquisition Efficiency
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Time-lapse seismic

e Current acquisition paradigm:

» repeat expensive dense acquisitions & “independent” processing
» compute differences between baseline & monitor survey(s)
» hampered by practical challenges to ensure repetition

e New compressive sampling paradigm:

» cheap subsampled acquisition, e.g. via time-jittered marine
undersampling

» may offer possibility to relax insistence on repeatability
» exploits insights from distributed compressive sensing
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Structure - curvelet representation
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Distributed compressive sensing
— joint recovery model (JRM)
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Distributed compressive sensing
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Distributed compressive sensing
— joint recovery model (JRM)

vintages
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o Key idea:
» use the fact that different vintages share common information
» invert for common components & differences w.r.t. the common
components with sparse recovery




Sparsity-promoting recovery

Z = argmin ||z||; subject to Az =Db
Z

A measurement operator/sampling matrix
b

observed data

/s estimated representation of true data




Interpretation of the model
- w/ & w/o repetition

e Inanidealworld (A; = As)
» JRM simplifies to recovering the difference from (bz — bl) = Ay (X2 — Xl)
» expect good recovery when difference is sparse
» but relies on “exact” repeatability...




Interpretation of the model
- w/ & w/o repetition

e Inanidealworld (A; = As)
» JRM simplifies to recovering the difference from (b2 — bl) = Ay (X2 — Xl)
» expect good recovery when difference is sparse
» but relies on “exact” repeatability...

e |n the real world (Al 7 AZ)

» no absolute control on surveys
» calibration errors
> noise...
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Sparse baseline, moniftor & time-lapse signals
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Sparse Joint Recovery Model (JRM)

— N AN~ A — 2, common component

_— 7 “difference”

e Z9 “difference”

Signal length N = 50
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Stylized experiments

Conduct many CS experiments to compare
» joint vs parallel recovery of signals and the difference
» recovery with completely independent A, A,
» random acquisition with different numbers of samples

n =10

Run 1000 different experiments

Compute Probability of recovery




Results : parallel versus joint recovery
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Observations

Joint recovery method is better than
parallel because it exploits the shared
information in the data

Fewer samples required with joint recovery




With exact repetition
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Number of measurements per signal

Results : parallel versus joint recovery
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N

Results : recovery and overlap dependency
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Interpretation from the stylized example
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Interpretation from the stylized example

e Joint recovery model (JRM) is always superior to the independent or
parallel method

e As the degree of overlap between the sampling increases, the
recovery of the signals gets worse.

e Time-lapse signal recovery benefits from some overlap




Time-jittered marine acquisition

- Application to time-lapse seismic



Method

e \/elocity and density model
Baseline Model Monitor Model provided by BG, taken as baseline
paseine monito e High permeability zone identified
’ at a depth of ~ 1300m

e Fluid substitution (gas/oil replaced
with brine) simulated to derive
monitor velocity model

e \Wavefield simulation to generate
synthetic time-lapse data
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Simulated original data
- time-domain finite differences
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Conventional vs. time-jittered sources
- undersampling ratio = 2, 2 source arrays
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Sample baseline and monitor
randomly and independently

Parallel /\ Joint

processing processing

Compare resulis

Repeat experiment for
different overlap in source
points




Measurements
- undersampled and blended

Recording time (s)

baseline
70,
80+
90 —— -

110+

120

0 500 1000
Receiver position (m)

Recording time (s)

monitor
70,
80 -
90

110 —

120

0

500 1000
Receiver position (m)




Baseline recovery
— 50% overlap in acquisition matrices
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Baseline recovery
— 20% overlap in acquisition matrices
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Monitor recovery
— 50% overlap in acquisition matrices
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Monitor recovery
— 20% overlap in acquisition matrices
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4-D recovery
— 50% overlap in acquisition matrices
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4-D recovery
— 20% overlap in acquisition matrices
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Stacked sections
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Stacked sections

— 50% overlap in acquisition matrices
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Stacked sections

— 20% overlap in acquisition matrices
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Summary (SNR (dB))

overlap baseline monitor 4-D signal
IRS JRM IRS JRM IRS JRM
100% 23 21.6 23.1 21.7 22.7 22.4
50% 23 28.9 25.5 28.9 9.7 18.2
20% 23 31.8 23.5 31.9 10.2 14.7
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Conclusions

Randomized sampling techniques can be extended to time-lapse
surveys

It is better to process time-lapse data jointly than independently, in
order to exploit shared information

We can save cost via cheap randomized acquisition designs

Resolving time-lapse signal from seismic data depends on the degree
of repeatability, when the data is “highly” under-sampled

Method can be extended to multiple surveys where we can use
fewer measurements




Future Plan

e Detection of weak and strong 4D changes in noisy environments with high
subsampling ratios

o Asymmetric measurement rates - skewed acquisition scenarios
 |ncorporate joint reconstruction into wave-equation based inversion

e Extension to time-jittered marine surveys on a non-uniform sampling grid

e Performance of recovery method on noisy data
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