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Robust EPSI

L 1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 Geophysics]

While |[p — M(g,q)||2 >0

determine new 7. from the Pareto curve
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Robust EPSI
L 1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 Geophysics]

While |[p — M(g,q)||2 >0

determine new 7. from the Pareto curve

Emits sparse, or
“deconvolved” solution

A1 = arg(;nin p— My, ql?




L1 projection and sparsity
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L1 projection and sparsity
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Motivation: G tolerates lowpass filtering
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Motivation: G tolerates lowpass filtering
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Lowpassed Data
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Motivation: G tolerates lowpass filtering
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Motivation: G tolerates lowpass filtering

O I

REPSI primary IR
from low-passed data @ 40Hz
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Motivation: G tolerates lowpass filtering
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Lowpass data permits coarser sampling w/o aliasing
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Lowpass data permits coarser sampling w/o aliasing

Impulse response solutions
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Lowpass data permits coarser sampling w/o aliasing

Zero—offset trace, 1140m
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Lowpass data permits coarser sampling w/o aliasing
(much faster!)
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Multilevel strategy for EPSI

warm-start fine-scale problem with
coarse-scale solutions




ldea: Warm-start with coarse-scale solutions

EPSI takes 70-100 iterations to converge (each iteration is doing 2
SRME multiple prediction), can we make it FASTER?

Since decimated datasets solve much faster, we interpolate its (slightly
inaccurate) G for the initial estimate to full problem

Previous Q is discarded

Interpolation method of G not important, just can’t alias. Simple
constant NMO (i.e., at water velocity) + linear interpolation works fine




Warm-starting/continuation from coarse solution
Example
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Warm-starting/continuation from coarse solution
Example

Solution of full data Solution of 4x decimated data
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Warm-starting/continuation from coarse solution
Example

Solution of 4x decimated data

Solution of full data 1600m/s NMO, linear interp 2x
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Warm-starting/continuation from coarse solution

EXO I p‘e Solution of 4x decimated data
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Warm-starting/continuation from coarse solution

Example |
p Solution on 2x dec data
Solution of 2x decimated data continuation from 4x dec solution
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Warm-starting/continuation from coarse solution
Example

Solution on 2x dec data
Solution of full data continuation from 4x dec solution
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Warm-starting/continuation from coarse solution
Example

Solution on 2x dec data > interp 2x
Solution of full data continuation from 4x dec solution

0 500 1000 1500 2000 0 500 1000 1500 2000
Position (m) Position (m)




Warm-starting/continuation from coarse solution

Example

Solution of full data
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Warm-starting/continuation from coarse solution
Example

0 ' ' ! ! Direct Primary

Solved with plain algorithm from
finest scale dato

0 500 1000 1500 2000
Position (m)



Warm-starting/continuation from coarse solution

Example
0 ' ' ! ! Direct Primary

Solved with spatial sampling
continuation
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Warm-starting/continuation from coarse solution

Example
0 1 ' ' ' ' Predicted Surface Muliiple
Solved with plain algorithm from
0.2 - . finest scale data
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Warm-starting/continuation from coarse solution

Example
0 1 ' ' ' ' Predicted Surface Muliiple
Solved with spatial sampling
0.2- . continuafion
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____ Significant speedup from bootstrapping (in 2D)

Per-iteration FLOPs cost (one forward/adjoint): 710 = Mlyev = Mgre

Cost(n) = O(2nyn°logn;) + O(nsn°)

2 times FFT computing MCG & sum in FX
1 1 , 1 ;
Cost | =n | = ZC’)(Qntn logny) - SO(nfn )

1 1
Cost (Zn> — 1—6(’)(2ntn2 lOgTLt) | 64(’)(nfn3)




____ Significant speedup from bootstrapping (in 2D)
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____ Significant speedup from bootstrapping (in 3D)

Per-iteration FLOPs cost (one forward/adjoint): 1 = NZycvy = NYrcv = NTLsre = NYsrc

Cost(n) = O(2nyn*logn;) + O(nn®)

2 times FFT computing MCG & sum in FX
1 1 1 1
Cost <§n, §nf> — 1—6(’)(2ntn4 logny) 1280(nfn6)

1 1 1 1
Cost [ —=n,~ny | = 2nsn* 1 : 0
oS (4n, 4nf> 2560( n:n” logny) 81920(nfn )




Significant speedup from bootstrapping
Wall fimes

From full data
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated
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60 iters at 4x decimated spatial sampling (1 min)




Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated
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15 iters at full problem size w/ all data (8 min)




Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated
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Significant speedup from bootstrapping
Wall fimes

From full data
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Field data example
North Sea dataset
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Decimated wavefields
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Solution wavefield comparison
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finest scale dato




Solution wavefield comparison
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Runtime breakdown
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Solution multiple comparison
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finest scale dato




Solution multiple comparison
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Predicted Surface Multiple
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continuation
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CMP position (km)

Solution stack comparison

NMO Stack
orginal dafa




CMP position (km)

Solution stack comparison

REPSI Primaries NMO Stack

Solved with plain algorithm from
finest scale dato




CMP position (km)

Solution stack comparison

REPSI Primaries NMO Stack

Solved with spatial sampling
continuation

dx =50m >25m > 12.5m




CMP position (km)

Solution stack comparison

NMO Stack
orginal dafa




CMP position (km)

Solution stack comparison

REPSI Multiples NMO Stack

Solved with plain algorithm from
finest scale dato




CMP position (km)

Solution stack comparison

REPSI Multiples NMO Stack

Solved with spatial sampling
continuation

dx =50m >25m > 12.5m
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Warm-start vs from zero residual graph
(for full scale problem)
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Warm-start vs from zero ‘G’ shot gathers
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Acceleration strategy summary

Start REPSI with decimated data, lowpass to avoid spatial aliasing
Once “enough” progress is made, continue with fine-scale data

Significant savings in computation cost, 100x to 200x SRMP becomes
more like 20x to 30x

How low can we go? Depends on the ability of sparsity-regularized
inversion to resolve wavefronts under reduced bandwidth.
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