Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

SVD-free matrix completion for seismic data reconstruction

Rajiv Kumar, Oscar Lopez, Ernie Esser and Felix J. Herrmann

SVD-free matrix completion for seismic data reconstruction

Rajiv Kumar, Oscar Lopez, Ernie Esser and Felix J. Herrmann

University of British Columbia

Outline

interpolation

 regularization - is binning the right approach?

- comparison with curvelet-based reconstruction methods

Motivation

- acquisition challenges
 - missing data
 - irregular acquisition grid
- fully sampled data
 - simultaneous shot based FWI & migration
 - estimation of primaries by sparse inversion & SRME
- regularization
 - imaging and inversion algorithm require equi-spaced grid
- exploit low-rank structure of seismic data - SVD-free matrix factorization

Outline

interpolation - comparison with curvelet-based reconstruction methods

regularization - is binning the right approach?

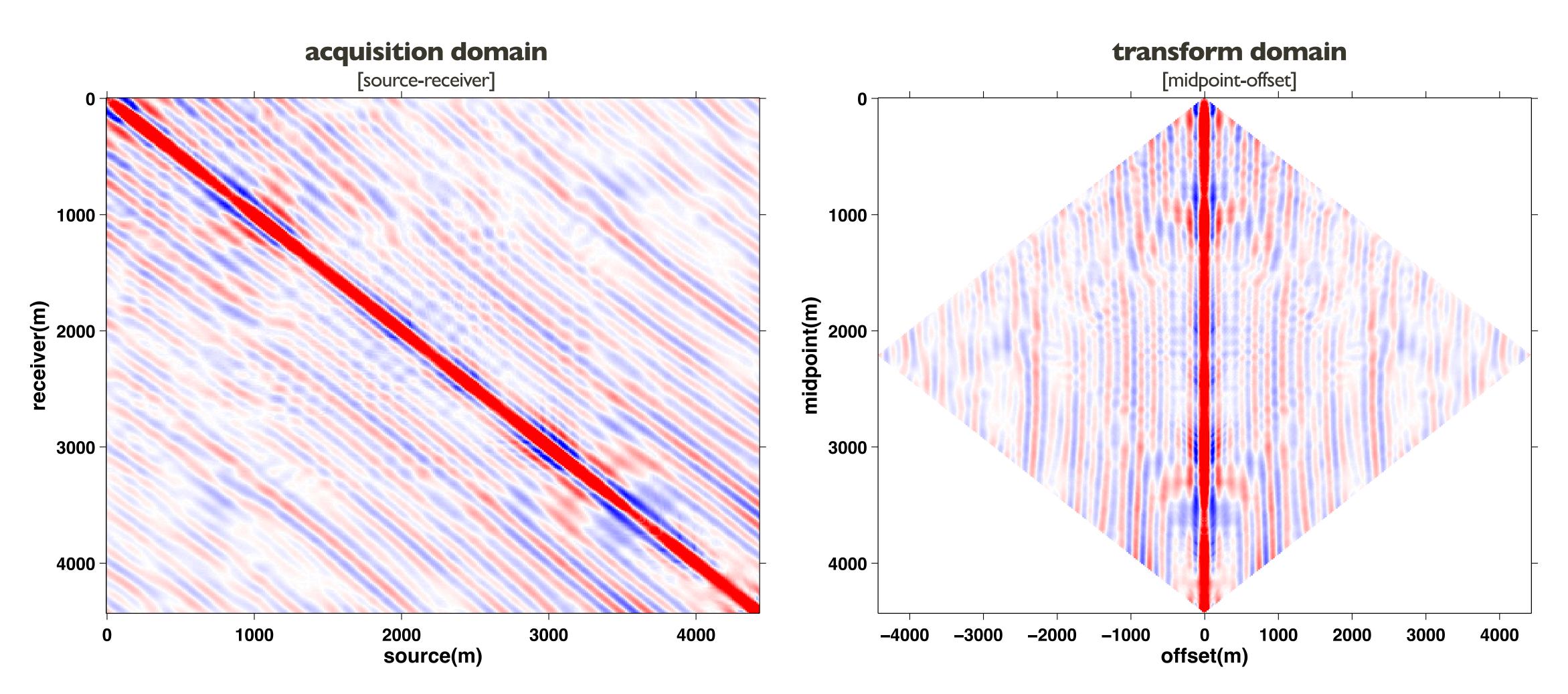
[Candes and Plan 2010, Oropeza and Sacchi 2011]

Matrix completion

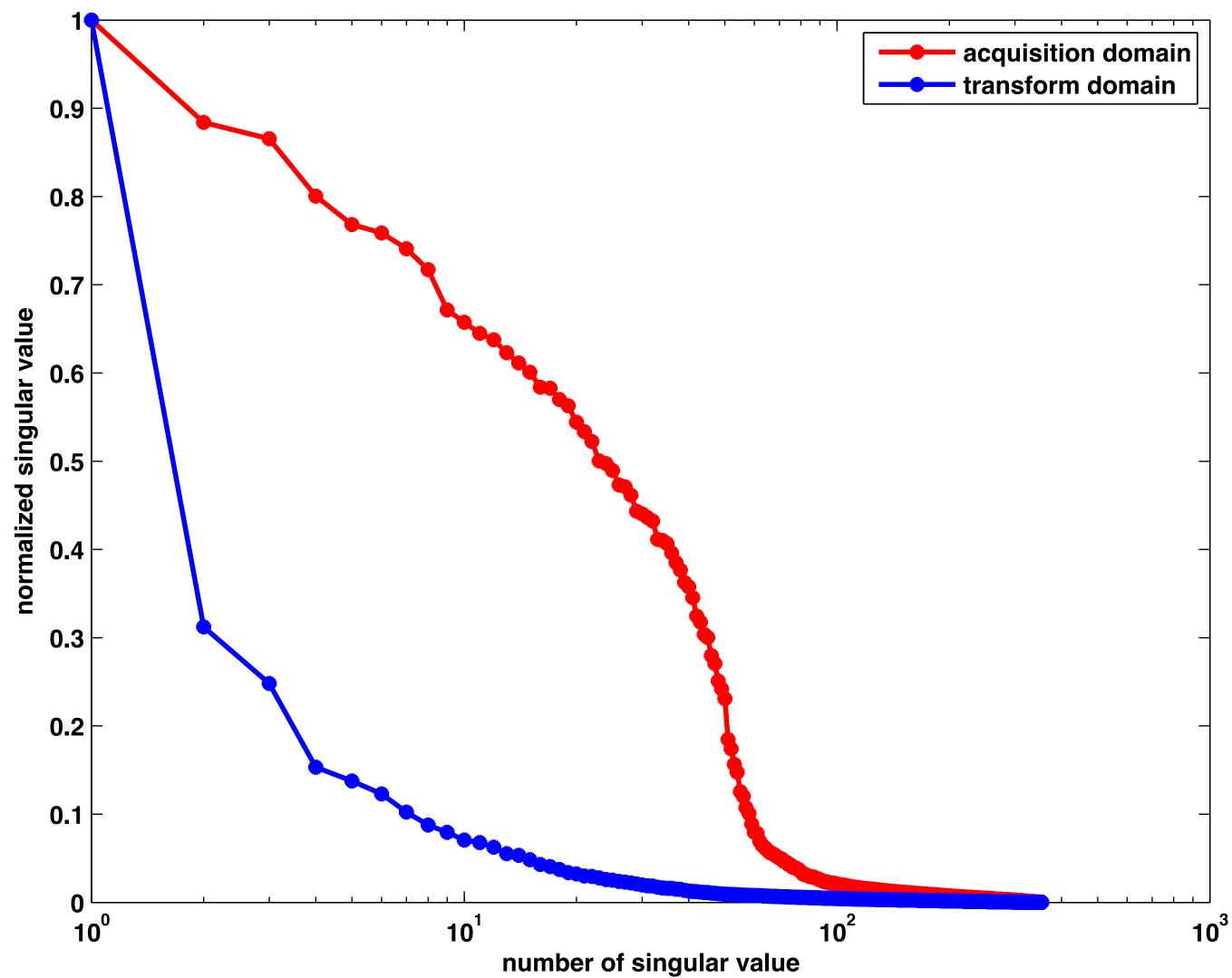
signal structure

- low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure **2-D** acquisition



Singular value decay 2-D acquisition



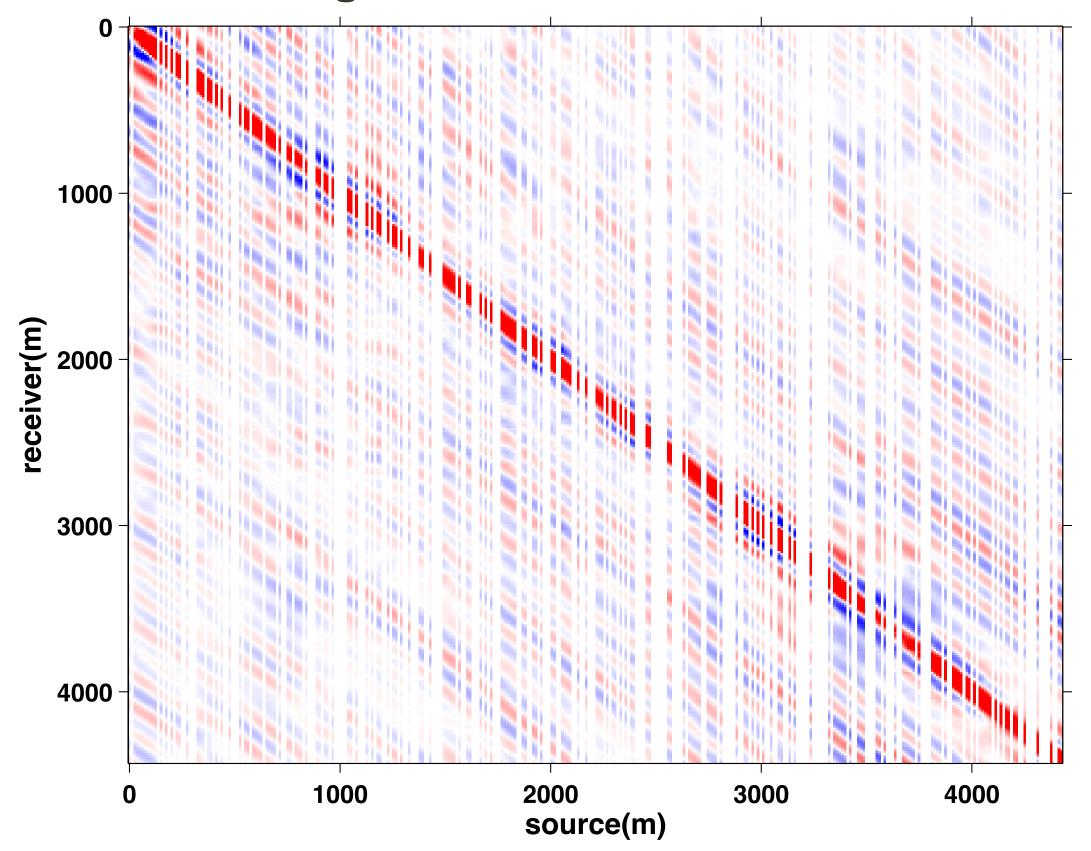
Matrix completion

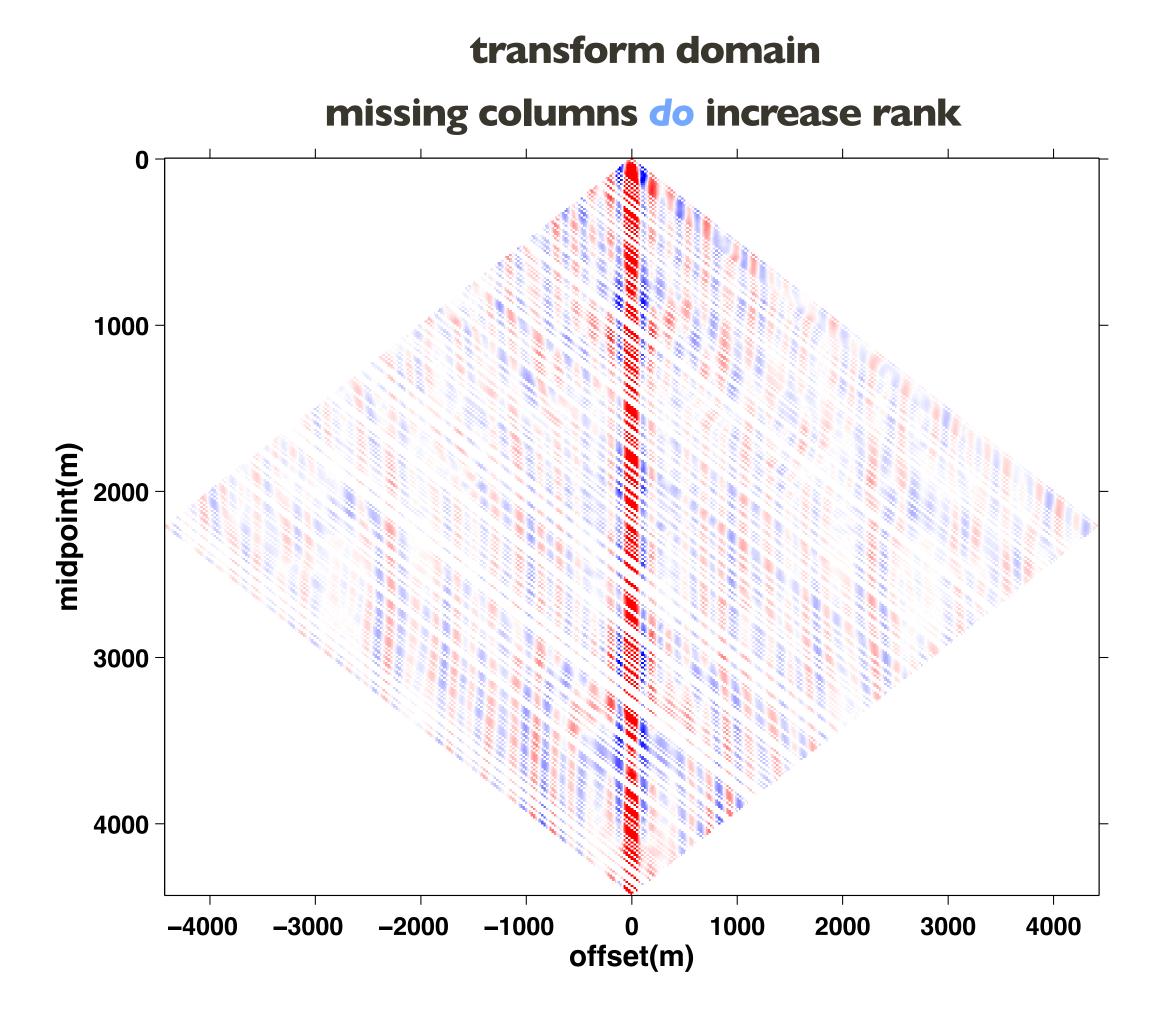
- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

2-D acquisition uniform-random sampling

acquisition domain

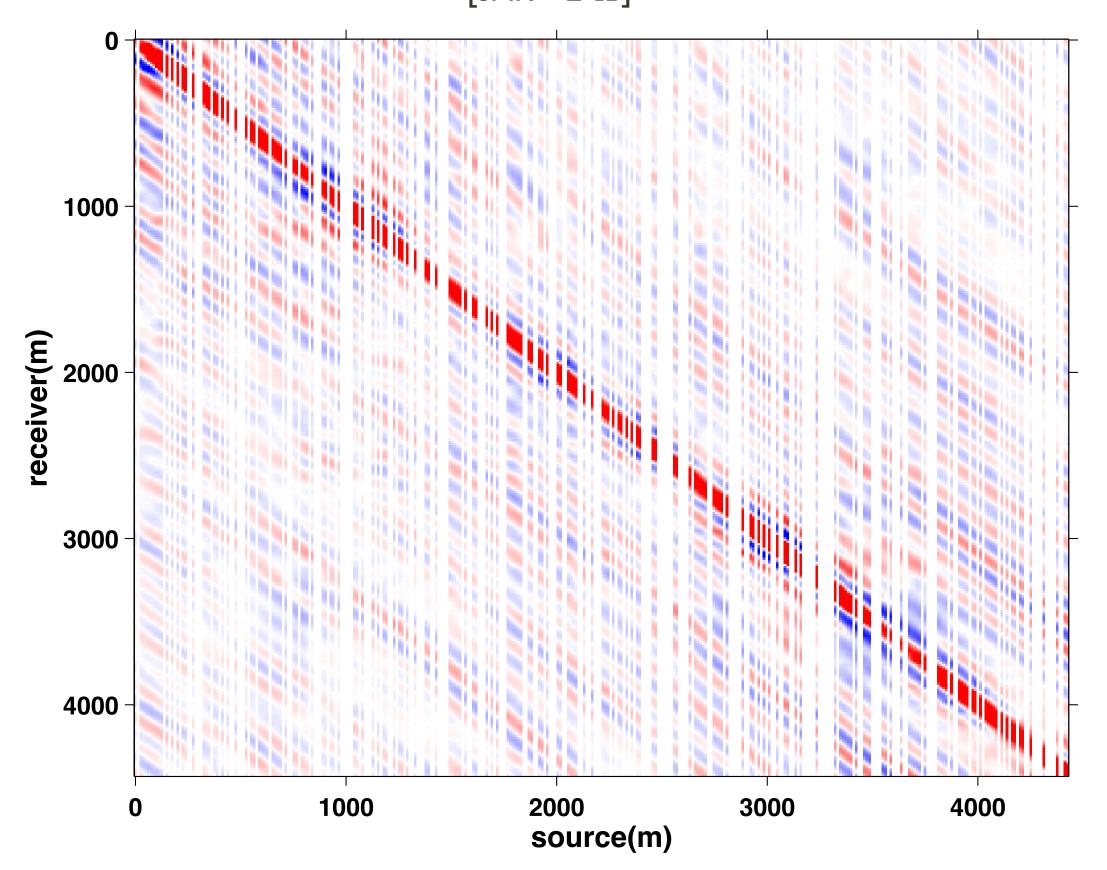
missing columns do not increase rank

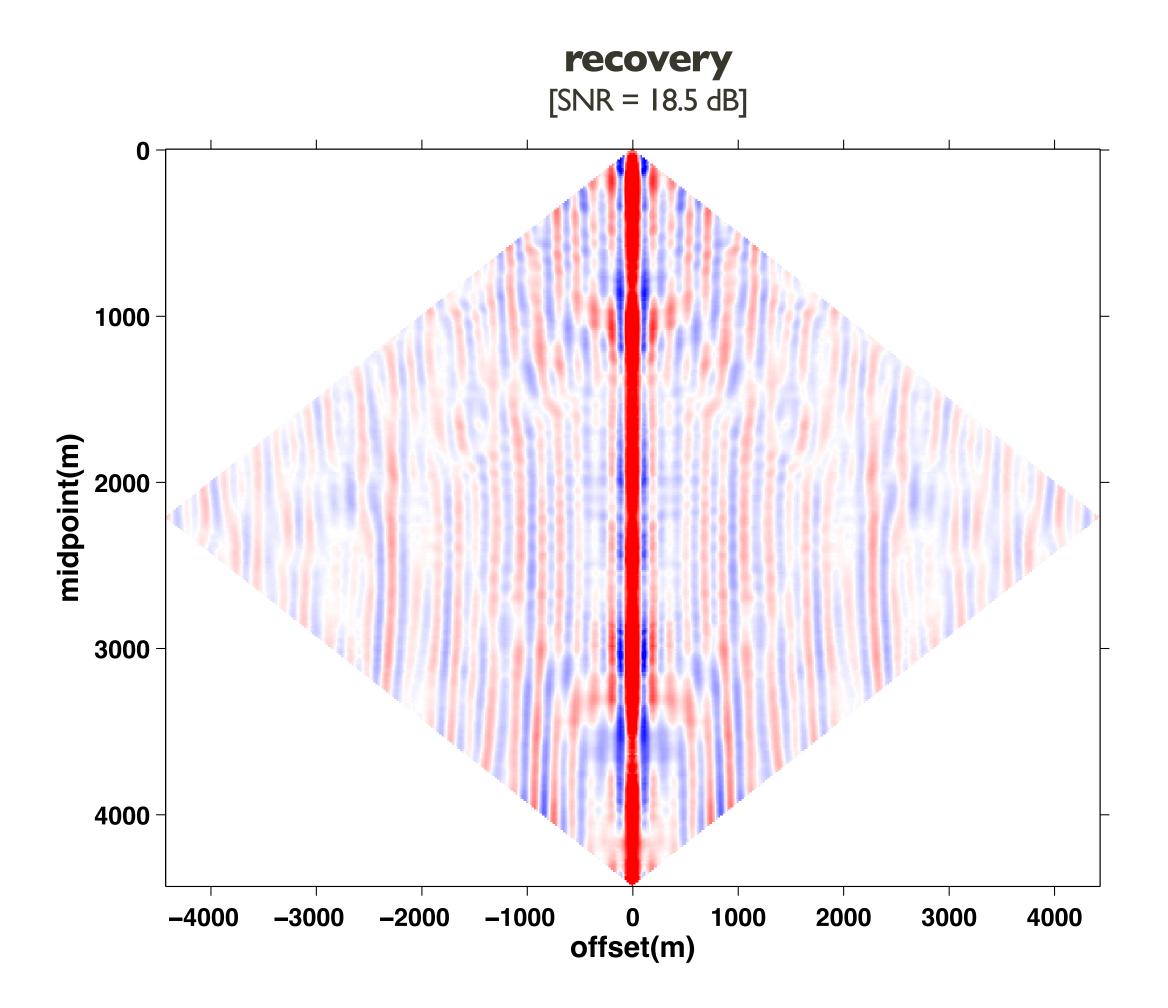




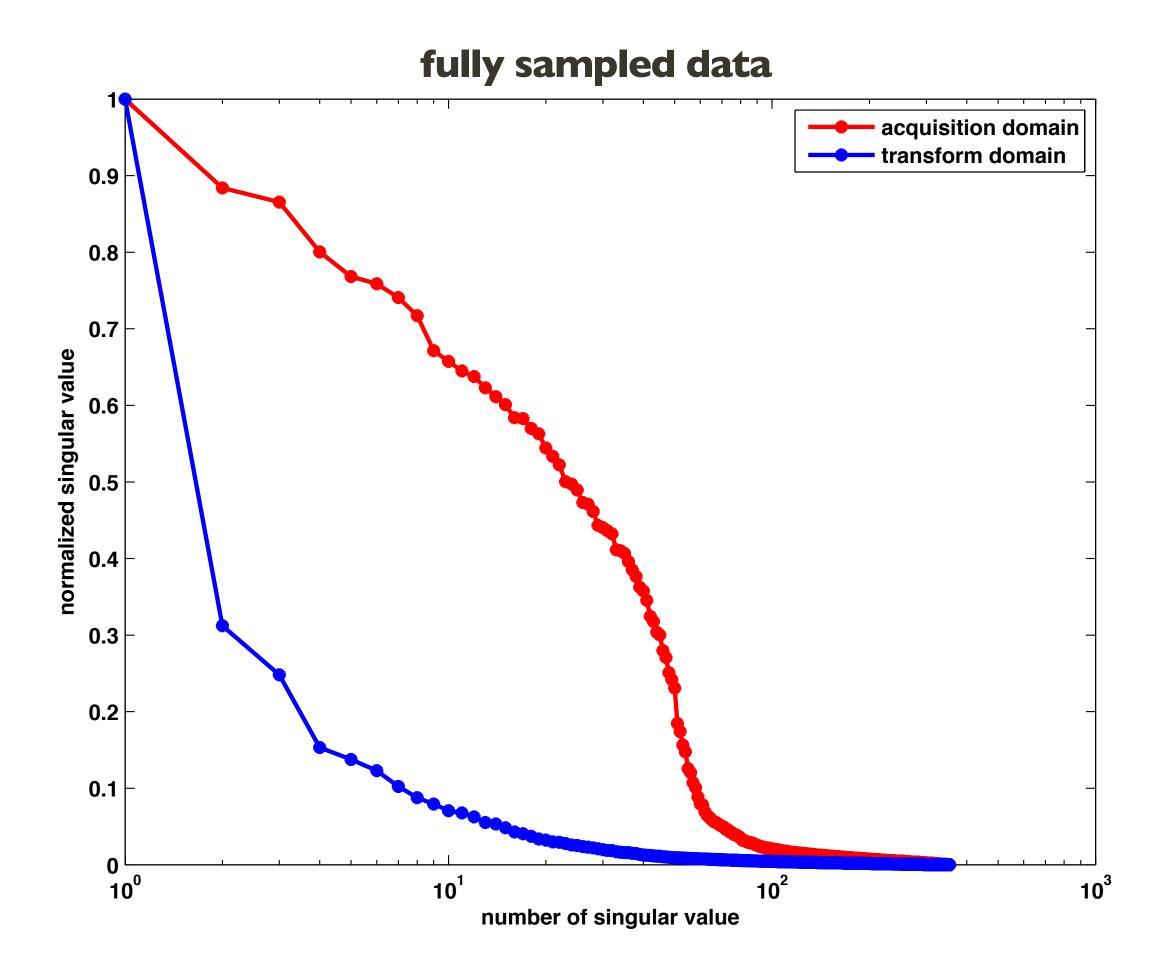
Low-rank interpolation

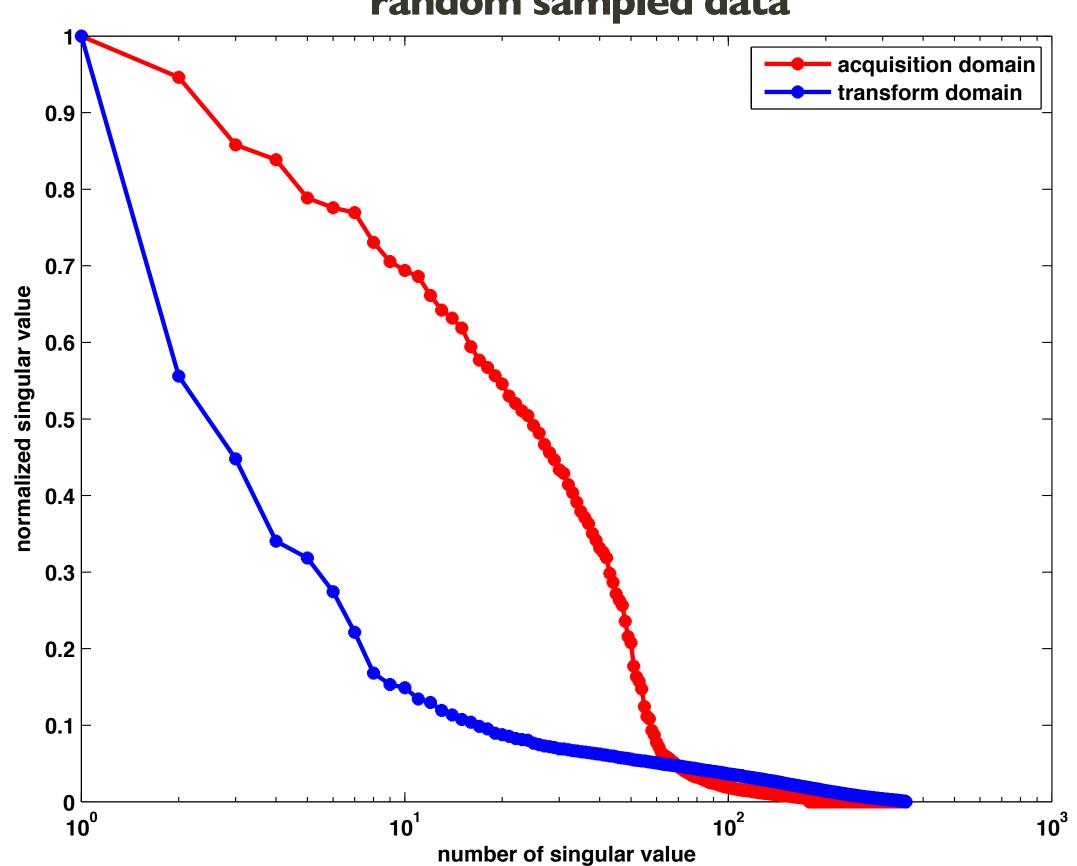
recovery [SNR = 2 dB]





Randomized sampling singular value decay





random sampled data

Observations

- sampling become incoherent in "transform" domain
- slow decay of singular values in "transform" domain

Matrix completion

- signal structure
 - low rank/fast decay of singular values
- sampling scheme
 - missing data increase rank in "transform domain"

recovery using rank penalization scheme

Rank minimization

where

• given a set of measurements b, aim is to solve $\min_{\mathbf{X}} \quad \operatorname{rank}(\mathbf{X}) \quad \text{s.t.} \ ||\mathcal{A}(\mathbf{X}) - \mathbf{b}||_2^2 \leq \sigma$ $(BPDN_{\sigma})$

where $rank(\mathbf{X}) = number of singular values of \mathbf{X}$

• \mathcal{A} is the transform-sampling operator defined as

- $\mathcal{A} = \mathbf{R}\mathbf{M}\mathcal{S}^H$

 - \mathbf{R} : restriction operator M: measurement operator \mathcal{S}^{H} : transform operator

Rank minimization

- prohibitively expensive
 - do not know rank value in advance
 - search over all possible values of rank
- instead solve nuclear-norm minimization
 - convex relaxation of rank-minimization [Recht et. al. 2010]

[Recht et. al. 2010]

Nuclear-norm minimization

we want to solve $\min_{\mathbf{X}} ||\mathbf{X}||_{*} \quad \text{s.t.} \; ||\mathcal{A}(\mathbf{X}) - \mathbf{b}||_{2}^{2} \leq \sigma$ $(BPDN_{\sigma})$ where

 $\|\mathbf{X}\|_* = \sum_{i=1} \lambda_i = \|\lambda\|_1$

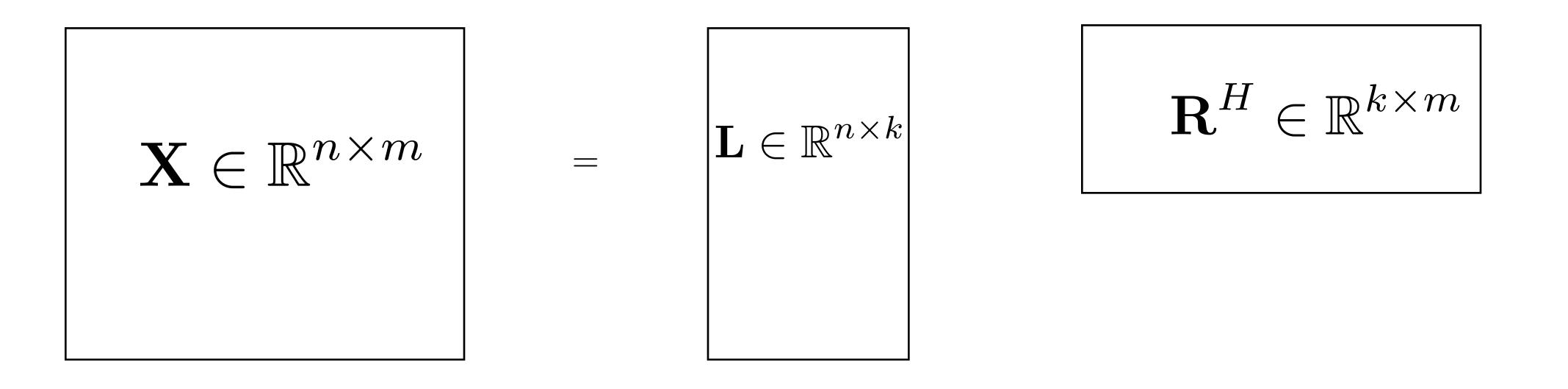
where λ_i are the singular values

Challenges

- requires repeated application of SVD for projections
- expensive to compute for large system - curse of dimensionality
- can we exploit rank structure "SVD free"

[Rennie and Srebro 2005, Lee et. al. 2010, Recht and Re 2011]

Factorized formulation



1

$\mathbf{X} = \mathbf{L}\mathbf{R}^{H}$

[Berg and Friedlander 2008, Aravkin et al. 2012b] **Factorized formulation**

• reformulate $(BPDN_{\sigma})$ formulation

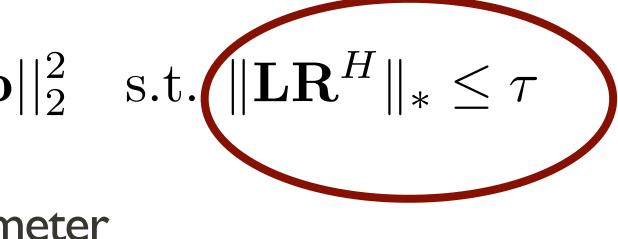
$$\min_{\mathbf{L},\mathbf{R}} ||\mathbf{L}\mathbf{R}^{H}||_{*} \quad \text{s.t.} ||\mathcal{A}|$$

• approximately solve a series of $LASSO_{\tau}$ formulation

$$v(\tau) = \min_{\mathbf{L},\mathbf{R}} ||\mathcal{A}(\mathbf{L}\mathbf{R}^{H}) - \mathbf{b}|$$

where \mathcal{T} is a rank regularization parameter

 $4(\mathbf{LR}^H) - \mathbf{b}||_2^2 \le \sigma$



[Rennie and Srebro 2005]

Factorized formulation

- Upper-bound on nuclear norm is defined as $\|\mathbf{L}\mathbf{R}^{H}\|_{*} \leq \frac{1}{2} \left\| \begin{bmatrix} \mathbf{L} \\ \mathbf{R} \end{bmatrix} \right\|_{F}^{2}$
 - where $\|\cdot\|_F^2$ is sum of squares of all entries
- choose k explicitly & avoid costly SVD's

Computational cost with and without SVD

		50%		75%	
	σ	0.1	0.08	0.1	0.08
Matrix completion w/ SVD	SNR (dB)	17.3	18.3	11.6	11.5
	time (sec)	812	937	790	765
Matrix completion w/o SVD	SNR (dB)	17.6	18.4	12.6	13.3
	time (sec)	8	10	8	7

Upcoming paper Check https://www.slim.eos.ubc.ca soon!

Computational cost matrix completion v/s curvelet-based methods

		50%		75%	
	σ	0.1	0.08	0.1	0.08
Matrix completion w/ SVD	SNR (dB)	17.3	18.3	11.6	11.5
	time (sec)	812	937	790	765
Matrix completion w/o SVD	SNR (dB)	17.6	18.4	12.6	13.1
	time (sec)	8	10	8	7
Curvelet-based sparsity promotion	SNR (dB)	17.4	18.6	12.5	12.8
	time (sec)	879	989	817	1010

Observation matrix completion v/s curvelet-based methods

Low-rank

computational time

O(*minutes*)

 $k \times (n+m)$ storage

Curvelet

O(hours)

$8 \times nm$

Take-away message

can avoid "SVD"

faster compare to curvelet-based sparsity promotion techniques

memory efficient compare to curvelet-based techniques

Outline

interpolation

 regularization - is binning the right approach?

- comparison with curvelet-based reconstruction methods

Regularization

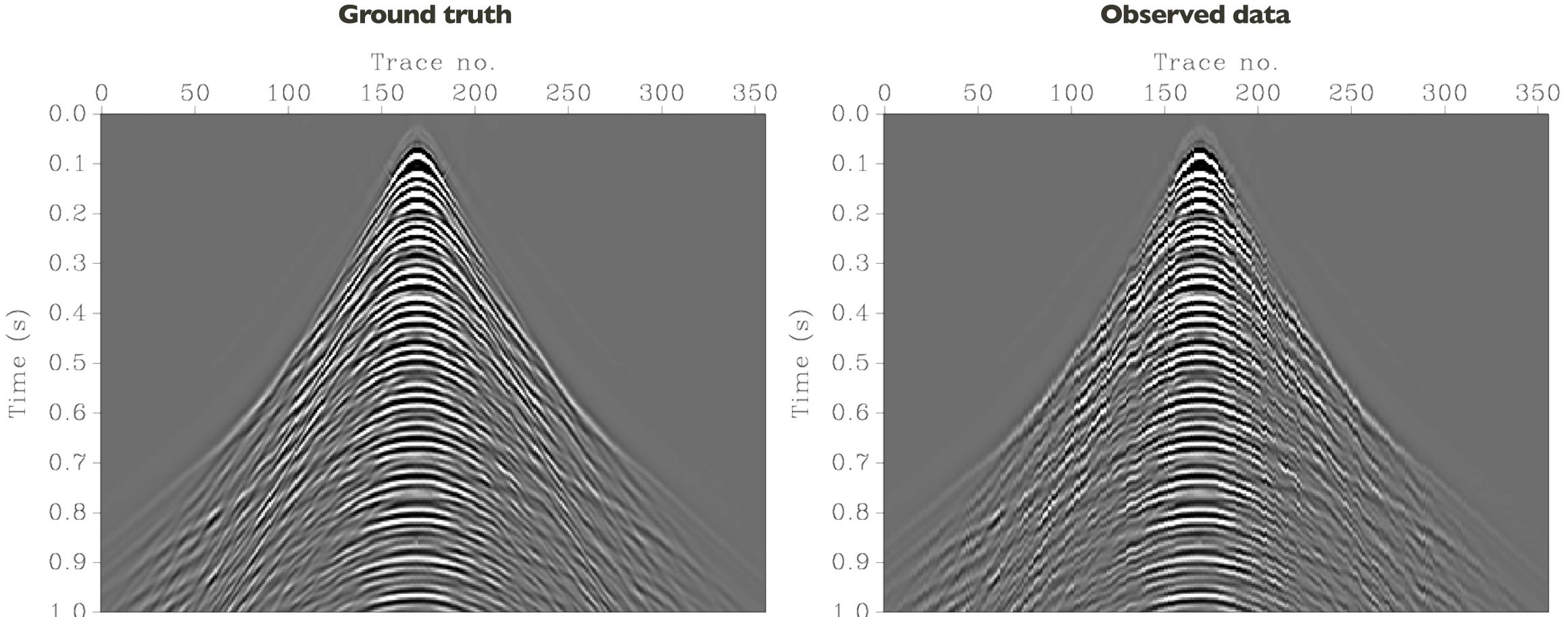
unstructured acquisition grid

imaging and inversion algorithm
regularly sampled data

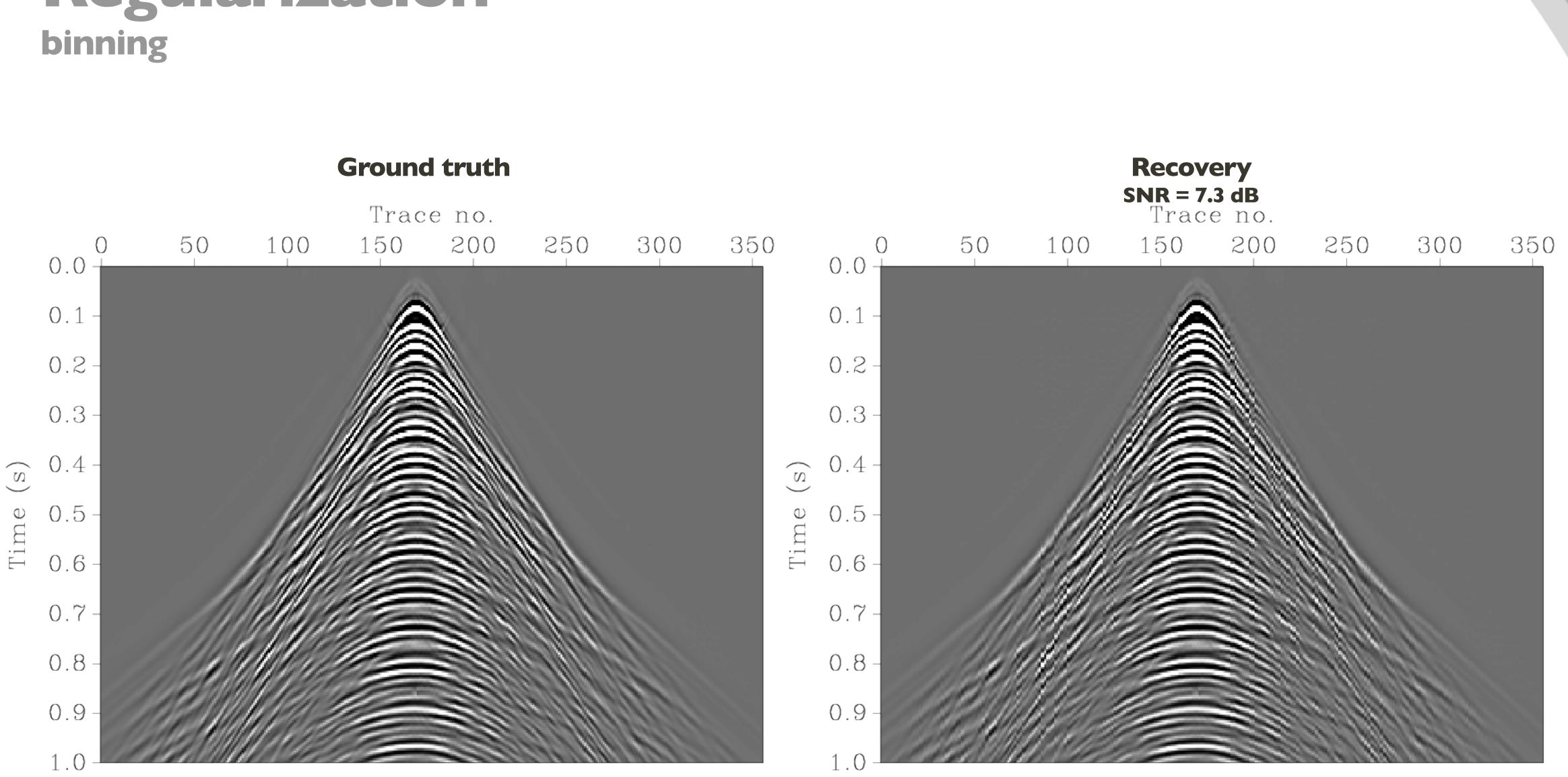
binning

- does not preserve the data-structure

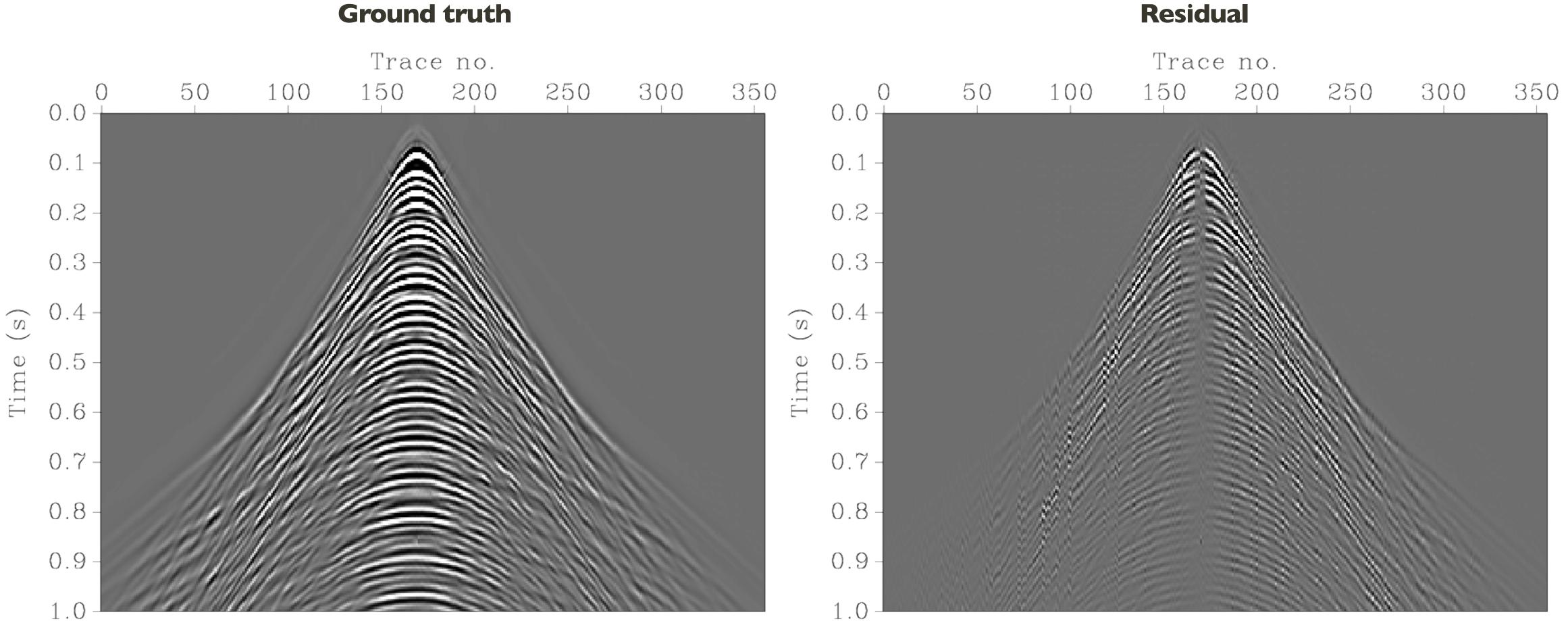
Regularization



Regularization

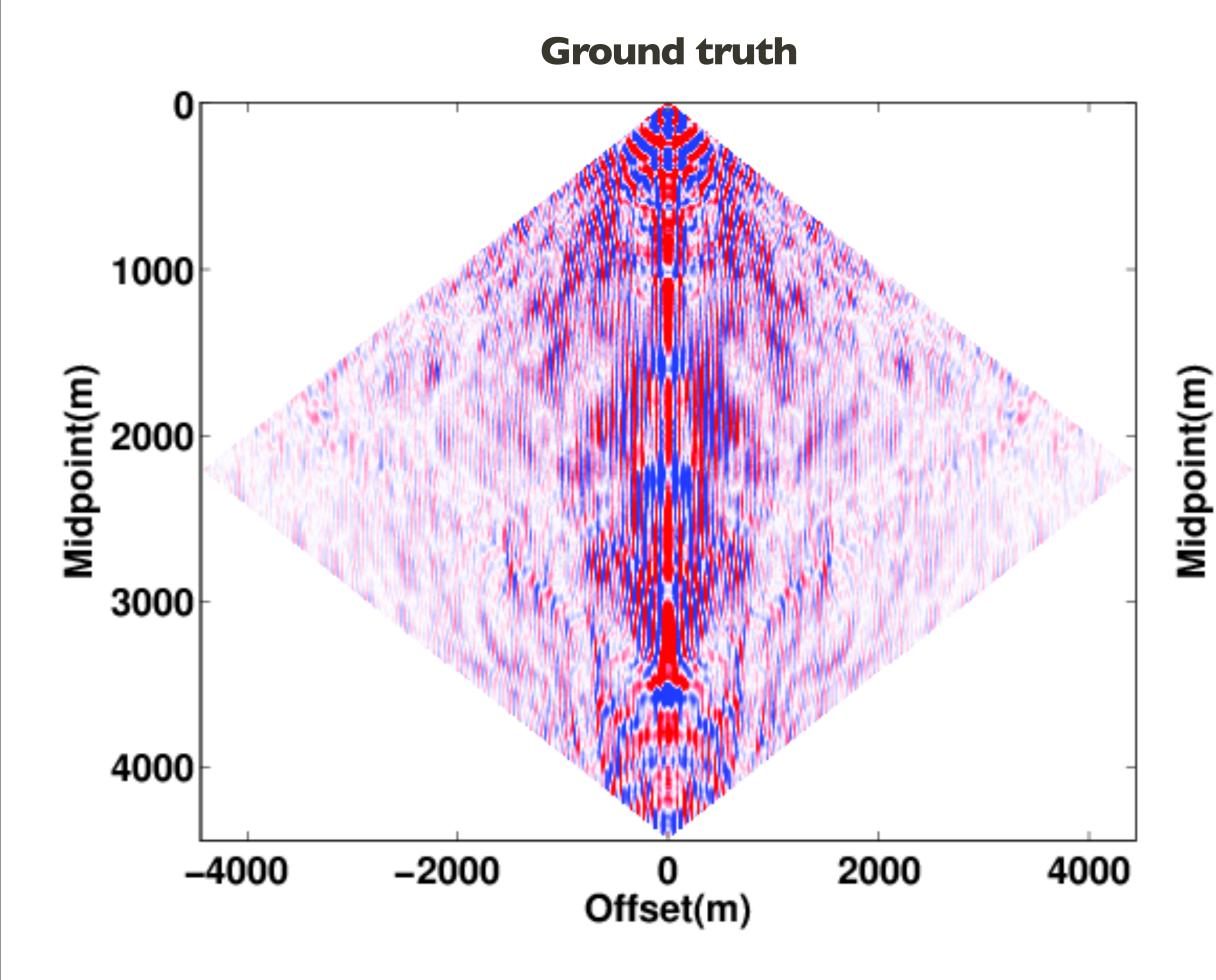


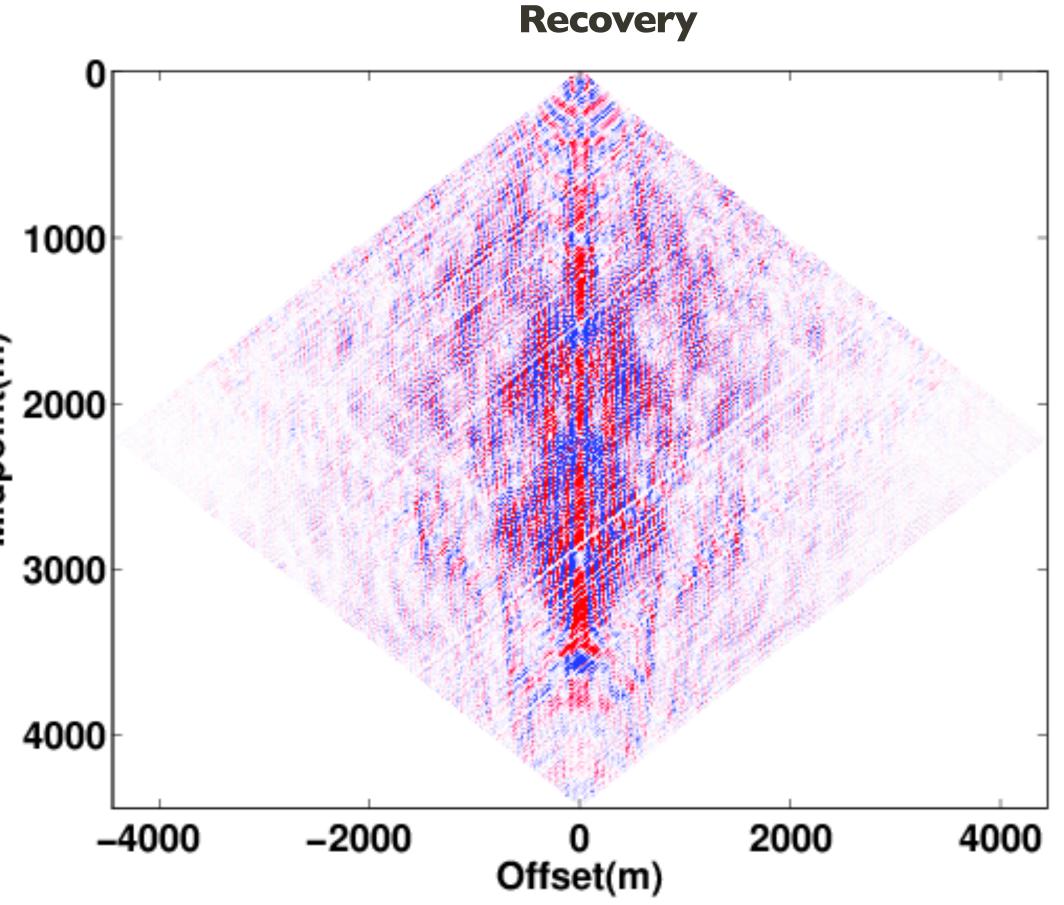
Regularization binning



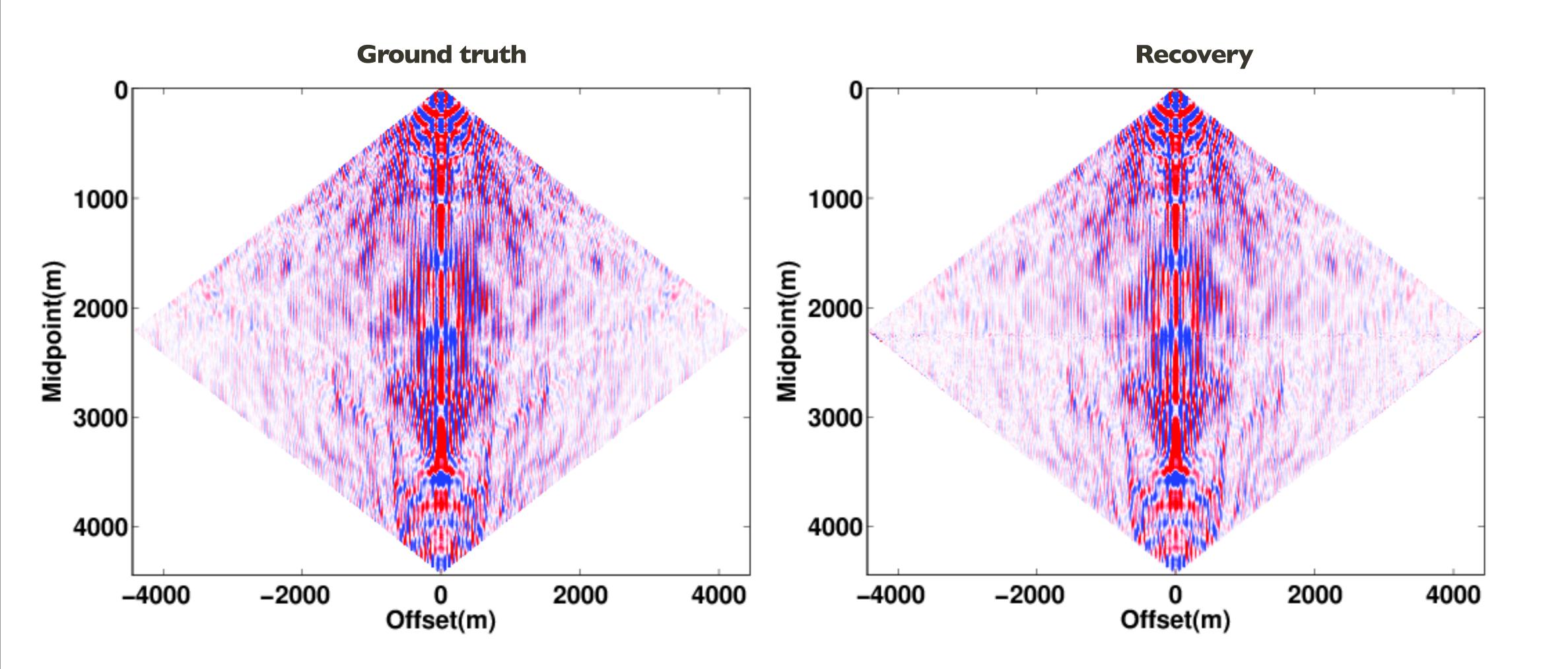
Residual

Low-rank structure binning, midpoint-offset domain

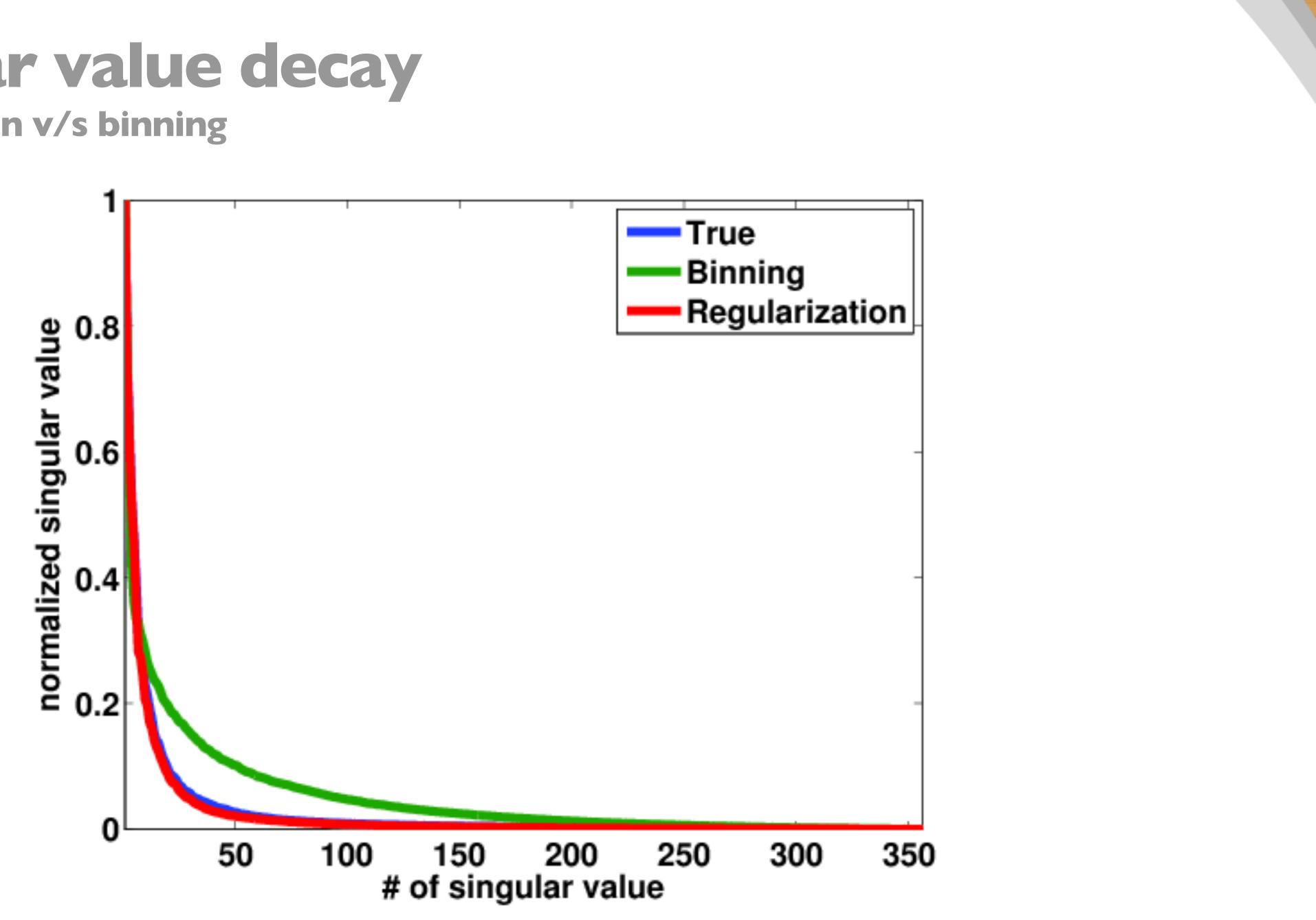




Regularization matrix completion, midpoint-offset domain



Singular value decay regularization v/s binning



Methodology matrix completion

- transform-sampling operator is redefine as

where

- S^H : transform operator

• given a regularization operator $\mathbf{N}: \mathbb{C}^{n \times m} \to \mathbb{C}^{n \times m}$ so that $\mathbf{N}(\mathbf{X}_r) = (\mathbf{X}_{ir})$,

$\mathcal{A} = \mathbf{R}\mathbf{M}\mathbf{N}^H\mathcal{S}^H$

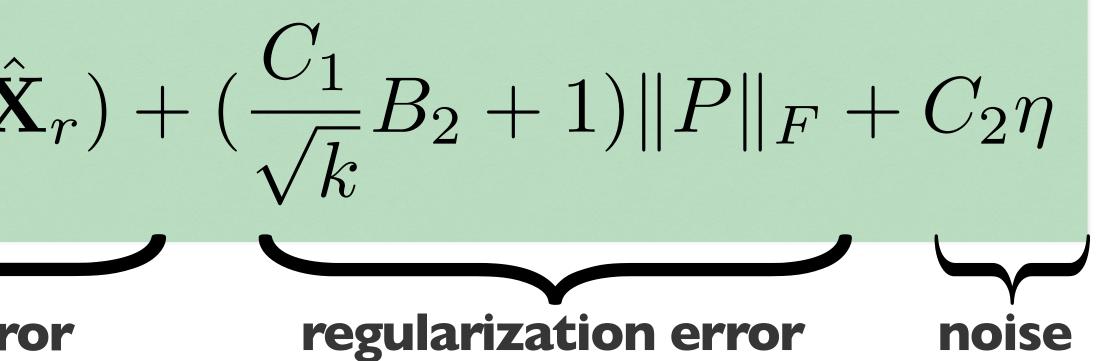
 \mathbf{R} : restriction operator M: measurement operator \mathbf{N}^{H} : regularization operator

Theorem matrix completion

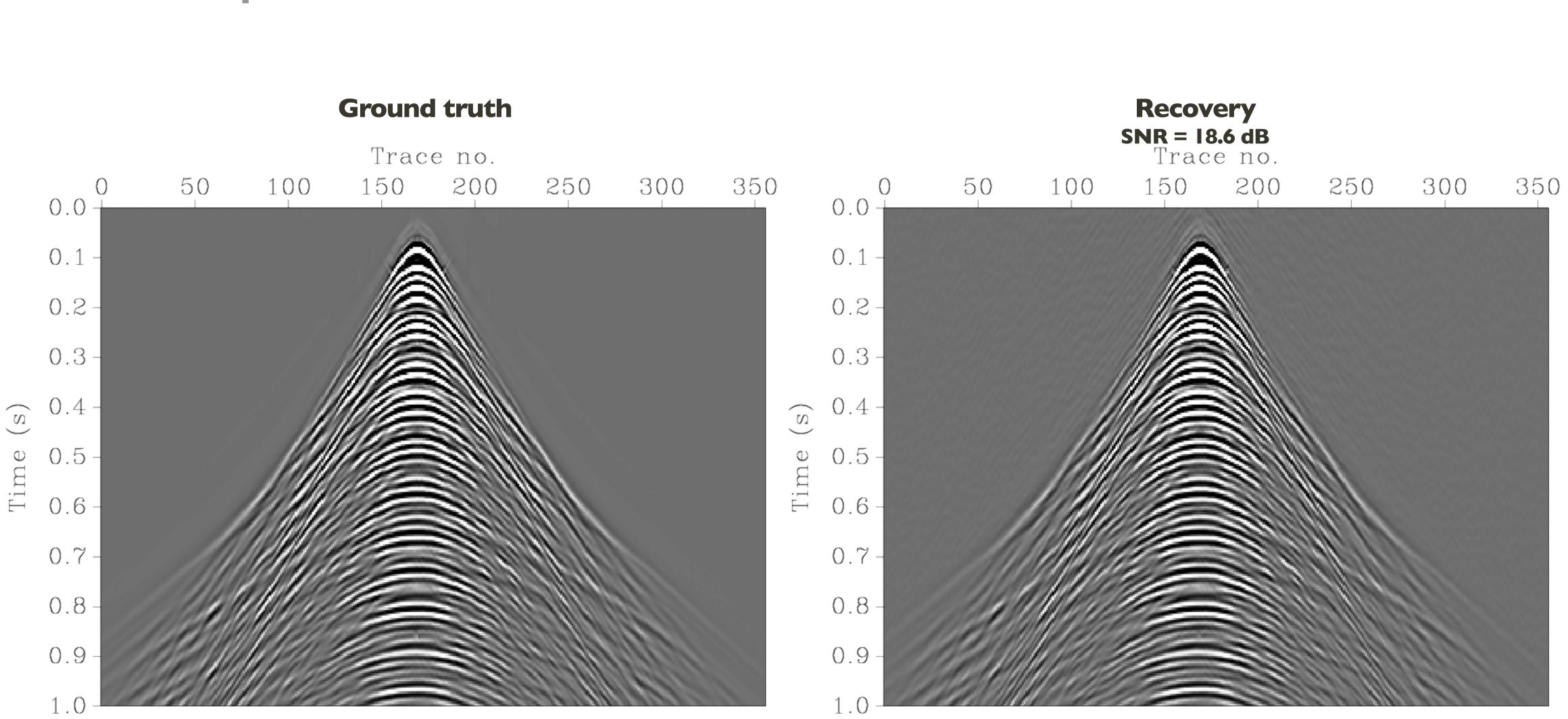
Let $\mathbf{X}_{\mathbf{r}} \in \mathbb{C}^{n \times m}$, $\hat{\mathbf{X}}_{r} \in \mathcal{S}$ and $\mathbf{b} = \mathbf{RM}(\mathbf{X}_{ir}) + e$ with $\|e\| \leq \eta$. Let $\tilde{\mathbf{X}}$ be the solution of BPDN_{σ}, then

$$\|\mathcal{S}(\mathbf{X}_{r} - \tilde{\mathbf{X}})\| \leq \frac{C_{1}}{\sqrt{k}} \sum_{j=k+1}^{l} \sigma_{j}(\hat{\mathbf{X}}_{r}) + (\mathbf{X}_{r}) + \mathbf{X}_{r}$$

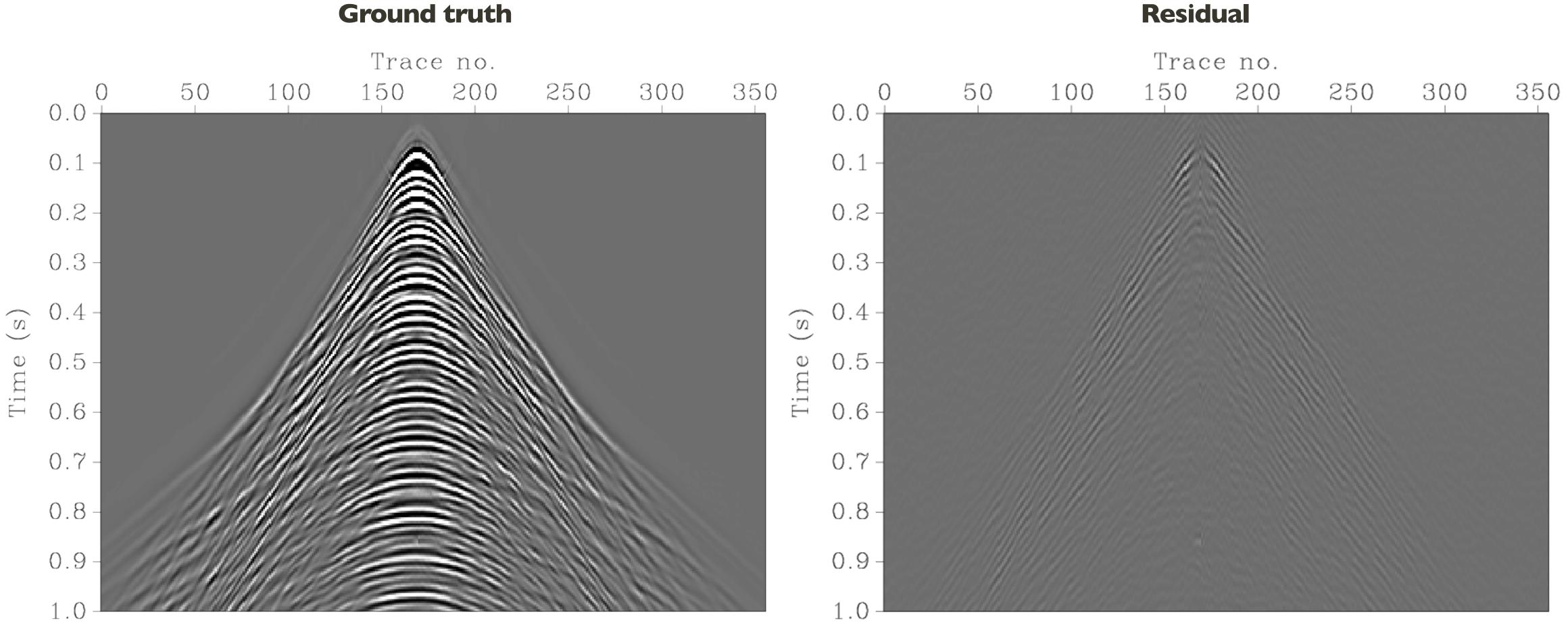
interpolation error
where
$$P = \mathbf{N}^{-1}(\mathbf{X}_{ir}) - \mathbf{X}_{r}$$
$$l = min\{n, m\}$$
$$B_{2} = (1 - \frac{k}{l})\sqrt{l}$$
$$C_{1} \text{ and } C_{2} > 0$$



Regularization matrix completion

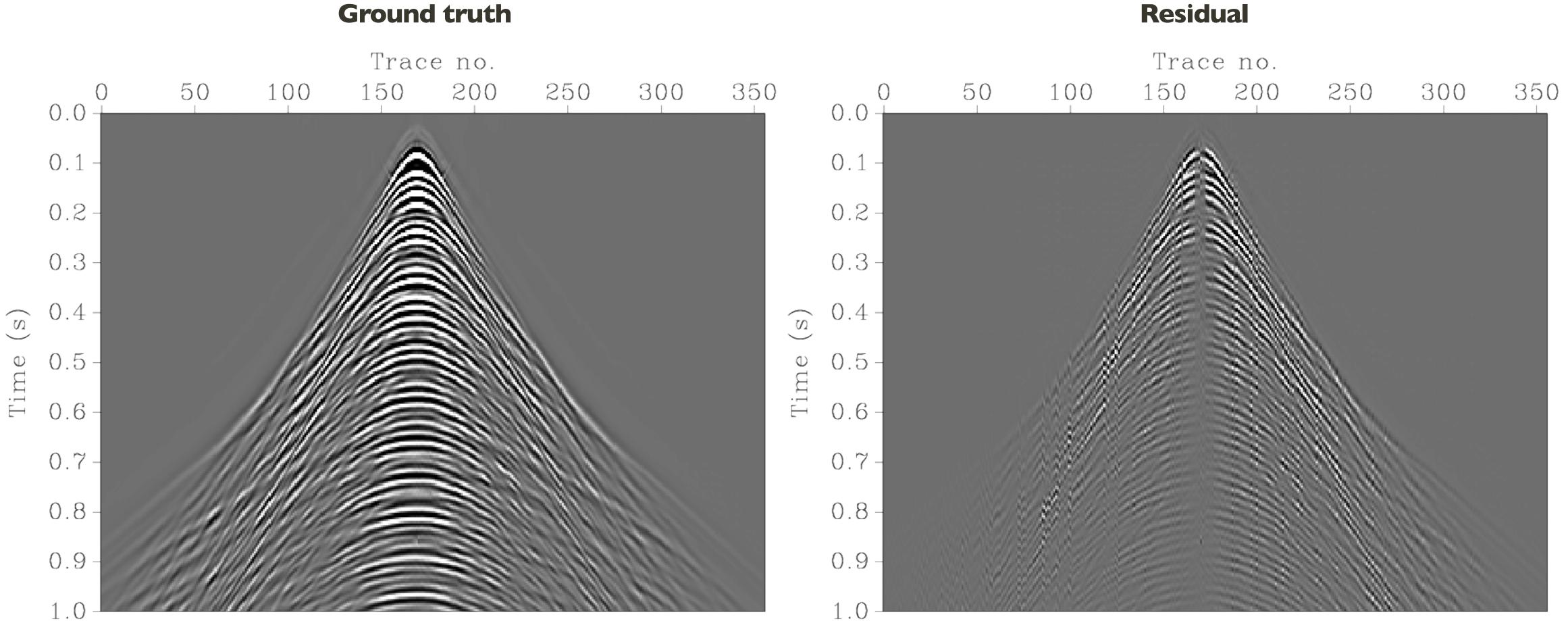


Regularization matrix completion

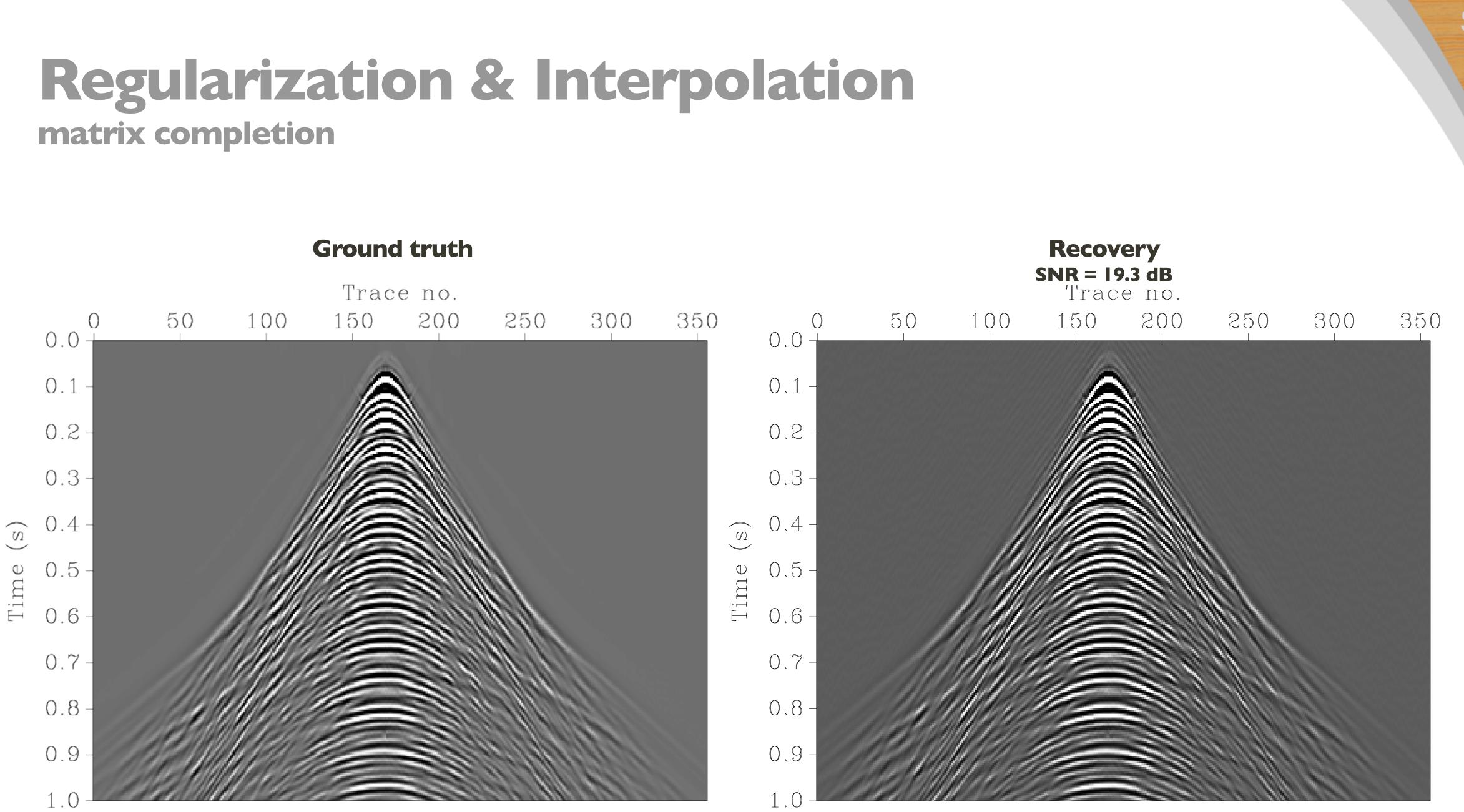


Residual

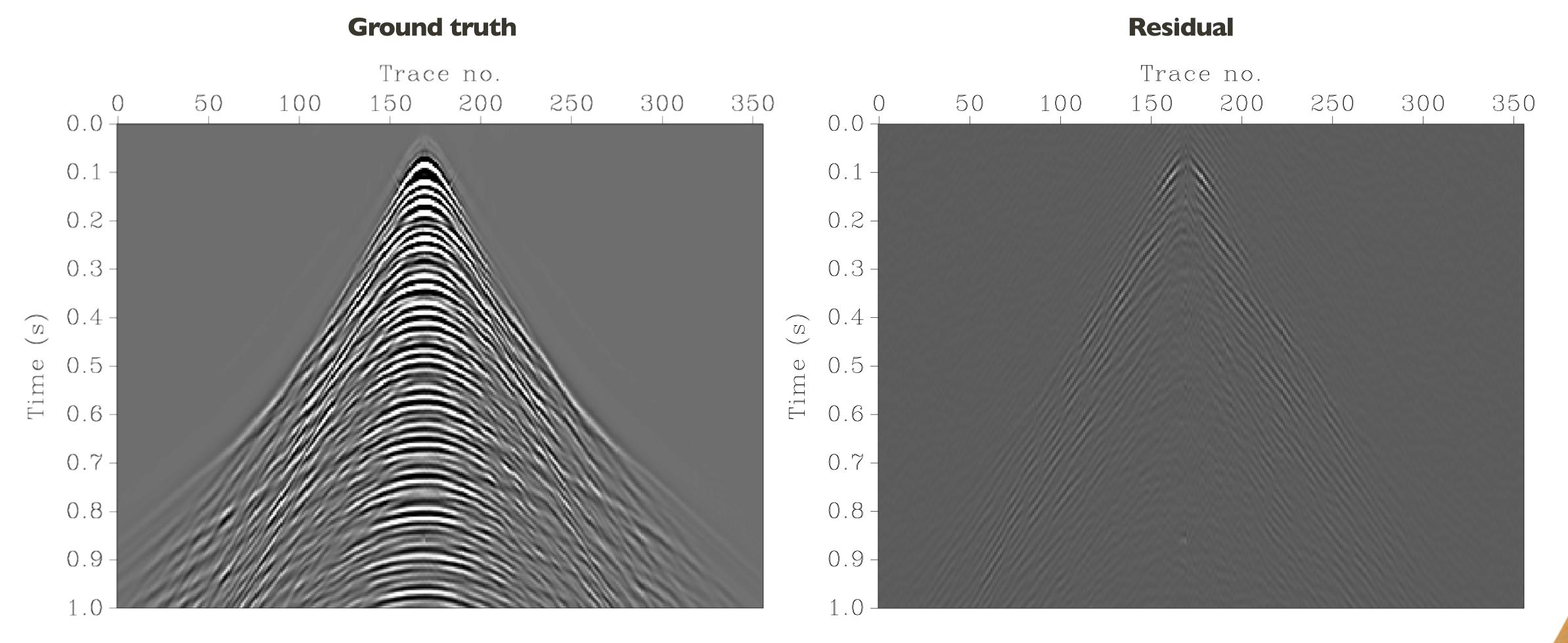
Regularization binning



Residual



Regularization & Interpolation matrix completion



Conclusion

- matrix factorization allows SVD-free low-rank methods that work fast on large data
- feasible then curvelet
- matrix-factorization promise more compact representation
- able to handle data at unstructured grids

reconstruction quality is as good as curvelet-based techniques but computationally more

Future work

incorporate irregularity along both sources & receivers coordinates

extension to 5D seismic data volumes

testing of matrix-factorization based methods on real-data

comparison with tensor-based interpolation methods

Acknowledgements We need Real data set

Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

