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Outline
‣ interpolation!
- comparison with curvelet-based reconstruction methods!

!

!

‣ regularization!
- is binning the right approach?



Motivation
‣ acquisition challenges!

- missing data!
- irregular acquisition grid!

!

‣ fully sampled data!
- simultaneous shot based FWI & migration!
- estimation of primaries by sparse inversion & SRME!

!

‣ regularization!
- imaging and inversion algorithm require equi-spaced grid!

!

‣ exploit low-rank structure of seismic data!
- SVD-free matrix factorization



Outline
‣ interpolation!
- comparison with curvelet-based reconstruction methods!

!

!

‣ regularization!
- is binning the right approach?



Matrix completion!

‣ signal structure!
- low rank/fast decay of singular values!

!

‣ sampling scheme!
- missing data increase rank in “transform domain”!

!

‣ recovery using rank penalization scheme

[Candes and Plan 2010, Oropeza and Sacchi 2011]



Low-rank structure!
2-D acquisition
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acquisition domain!
[source-receiver]

transform domain!
[midpoint-offset]
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Singular value decay!
2-D acquisition



Matrix completion!

‣ signal structure!
- low rank/fast decay of singular values!

!

‣ sampling scheme!
- missing data increase rank in “transform domain”!

!

‣ recovery using rank penalization scheme
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2-D acquisition!
uniform-random sampling

missing columns do not increase rank missing columns do increase rank
acquisition domain transform domain



Low-rank interpolation!
recovery!

[SNR = 18.5 dB]
recovery!
[SNR = 2 dB]
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Randomized sampling!
singular value decay
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Observations
‣ sampling become incoherent in “transform” domain!
!

!

‣ slow decay of singular values in “transform” domain



Matrix completion!

‣ signal structure!
- low rank/fast decay of singular values!

!

‣ sampling scheme!
- missing data increase rank in “transform domain”!

!

‣ recovery using rank penalization scheme



Rank minimization!

‣ given a set of measurements    , aim is to solve !
!

!

!

where                   number of singular values of !
!

‣    is the transform-sampling operator defined as!
!

!

where!                                    :  restriction operator!
                                          :  measurement operator !
                                          :  transform operator!

b

min
X

rank(X) s.t. ||A(X)� b||22  �(BPDN�)

X

A
A = RMSH

R
M
SH

rank(X) =



Rank minimization!
‣ prohibitively expensive!

- do not know rank value in advance!
- search over all possible values of rank!

!

‣ instead solve nuclear-norm minimization!
- convex relaxation of rank-minimization [Recht et. al. 2010]



Nuclear-norm minimization!
‣ we want to solve!

!

!

!

where !
!

!

!

 where      are the singular values!
!

!

[Recht et. al. 2010]

min
X

||X||⇤ s.t. ||A(X)� b||22  �(BPDN�)

kXk⇤ =
mX

i=1

�i = k�k1

�i



Challenges!
‣ requires repeated application of SVD for projections!

!

‣ expensive to compute for large system!
- curse of dimensionality!
!

‣ can we exploit rank structure “SVD free” 



Factorized formulation!

[Rennie and Srebro 2005, Lee et. al. 2010, Recht and Re 2011]

X = LRH

X 2 Rn⇥m L 2 Rn⇥k
=

RH 2 Rk⇥m



Factorized formulation!

‣ reformulate                   formulation!
!

!

!

!

‣ approximately solve a series of              formulation!
!

!

!

     where     is a rank regularization parameter!
!

!

(BPDN�)

min
L,R

||LRH ||⇤ s.t. ||A(LRH)� b||22  �

v(⌧) = min
L,R

||A(LRH)� b||22 s.t. kLRHk⇤  ⌧

[Berg and Friedlander 2008, Aravkin et al. 2012b]

LASSO⌧

⌧



Factorized formulation!
‣ Upper-bound on nuclear norm is defined as!

!

!

!

    where          is sum of squares of all entries!
!

!

‣ choose    explicitly & avoid costly SVD’s!
!

[Rennie and Srebro 2005]

kLRHk⇤  1

2

����


L
R

�����
2

F

k.k2F

k



50% 75%

0.1 0.08 0.1 0.08

Matrix completion w/ SVD
SNR (dB) 17.3 18.3 11.6 11.5

time (sec) 812 937 790 765

Matrix completion w/o SVD
SNR (dB) 17.6 18.4 12.6 13.3

time (sec) 8 10 8 7

Computational cost 
with and without SVD

�



Computational cost 
matrix completion v/s curvelet-based methods

50% 75%

0.1 0.08 0.1 0.08

Matrix completion w/ SVD
SNR (dB) 17.3 18.3 11.6 11.5

time (sec) 812 937 790 765

Matrix completion w/o SVD
SNR (dB) 17.6 18.4 12.6 13.1

time (sec) 8 10 8 7

Curvelet-based sparsity 
promotion

SNR (dB) 17.4 18.6 12.5 12.8

time (sec) 879 989 817 1010

�

Upcoming paper!
Check https://www.slim.eos.ubc.ca soon!



Observation 
matrix completion v/s curvelet-based methods

Low7rank Curvelet

computational*time

storage

O(minutes) O(hours)

k ⇥ (n+m) 8⇥ nm



Take-away message!
‣ can avoid “SVD”!

!

!

‣ faster compare to curvelet-based sparsity promotion techniques!
!

!

‣ memory efficient compare to curvelet-based techniques!



Outline
‣ interpolation!
- comparison with curvelet-based reconstruction methods!

!

!

‣ regularization!
- is binning the right approach?



Regularization!
‣ unstructured acquisition grid!

!

!

‣ imaging and inversion algorithm!
- regularly sampled data!

!

!

‣ binning!
- does not preserve the data-structure



Regularization!

Ground truth! Observed data!



Regularization!
binning

Ground truth! Recovery!
SNR = 7.3 dB



Regularization!
binning

Ground truth! Residual!



Low-rank structure!
binning, midpoint-offset domain

Ground truth! Recovery!



Regularization!
matrix completion, midpoint-offset domain

Ground truth! Recovery!



Singular value decay!
regularization v/s binning



‣ given a regularization operator                                                                                ,     
transform-sampling operator is redefine as    !
!

!

!
!
!where!                                    :  restriction operator!
                                          :  measurement operator !
                                          :  regularization operator!
                                          :  transform operator!

Methodology!
matrix completion

R
M

SH

N : Cn⇥m ! Cn⇥m
so that N(Xr) = (Xir)

A = RMNHSH

NH



Theorem!
matrix completion

noiseinterpolation error regularization error{ { {

C1 and C2 > 0

where
P = N�1(Xir)�Xr

l = min{n,m}

Let Xr 2 Cn⇥m, ˆXr 2 S and b = RM(Xir) + e with kek  ⌘. Let ˜X be the solution of BPDN�, then

kS(Xr � X̃)k  C1p
k

lX

j=k+1

�j(X̂r) + (
C1p
k
B2 + 1)kPkF + C2⌘

B2 = (1� k

l
)
p
l



Regularization!
matrix completion

Ground truth! Recovery!
SNR = 18.6 dB



Regularization!
matrix completion

Ground truth! Residual!



Regularization!
binning

Ground truth! Residual!



Regularization & Interpolation!
matrix completion

Ground truth! Recovery!
SNR = 19.3 dB



Regularization & Interpolation!
matrix completion

Ground truth! Residual!



Conclusion!
!

‣ matrix factorization allows SVD-free low-rank methods that work fast on large data!
!

!

‣ reconstruction quality is as good as curvelet-based techniques but computationally more 
feasible then curvelet!
!
!

‣ matrix-factorization promise more compact representation!
!

!

‣ able to handle data at unstructured grids!
!

!



Future work!
!

‣ incorporate irregularity along both sources & receivers coordinates!
!

!

‣ extension to 5D seismic data volumes!
!

!

‣ testing of matrix-factorization based methods on real-data !
!

!

‣ comparison with tensor-based interpolation methods!
!
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