Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Latest developments in marine (4D) acquisition Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann

Latest developments in marine (4D) acquisition Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann

SLIM University of British Columbia

Carry home messages

Randomization of field-data acquisition has solid theoretical underpinnings from compressive sensing can lead to improved wavefield reconstruction from "low-cost" acquisition

- new insights how to acquire data

Randomization and repeatability in time-lapse acquisition

- could put an end to insisting on repeatability
- exploits what time-lapse surveys have in common rather than how they differ
- improved time-lapse signals from severely undersampled data

Mosher, C. C., Keskula, E., Kaplan, S. T., Keys, R. G., Li, C., Ata, E. Z., ... & Sood, S. (2012, November). Compressive Seismic Imaging. In *2012 SEG Annual Meeting*. Society of Exploration Geophysicists.

- examples from industry (ConocoPhilips)

Deliberate & natural randomness in acquisition

(thanks to Chuck Mosher)

Bottom line

- examples from industry (ConocoPhilips)

Economics

(thanks to Chuck Mosher)

Standard Production vs. CSI Production

Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, "Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology", Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012 Felix J. Herrmann, "Randomized sampling and sparsity: Getting more information from fewer samples", Geophysics, vol. 75, p. WB173-WB187, 2010

Compressive sensing paradigm

Find representations that reveal structure

transform-domain sparsity (e.g., Fourier, curvelets, etc.)

Sample to break the structure

- destroy sparsity

Recover *structure* by promoting

sparsity via one-norm minimization

randomized acquisition (e.g., jittered sampling, time dithering, encoding, etc.)

Felix J. Herrmann and Gilles Hennenfent, "Non-parametric seismic data recovery with curvelet frames", GJI, vol. 173, p. 233-248, 2008. Gilles Hennenfent and Felix J. Herrmann, "Simply denoise: wavefield reconstruction via jittered undersampling", Geophysics, vol. 73, p. V19-V28, 2008. Felix J. Herrmann, "Randomized sampling and sparsity: Getting more information from fewer samples", Geophysics, vol. 75, p. WB173-WB187, 2010.

Golden oldies - sparse time-harmonic signals

Gilles Hennenfent and Felix J. Herrmann, "Simply denoise: wavefield reconstruction via jittered undersampling", Geophysics, vol. 73, p. V19-V28, 2008.

Jittered sampling

Typical spatial

Periodic sampling

3-fold undersampled

SNR = 6.92 dB

recovered

Uniform random sampling

3-fold undersampled

Jittered sampling

3-fold undersampled

Time-*jittered* marine acquisition

Objective

Shorten marine acquisition times & increase source sample density.

Question: Does increased variability of firing times improve recovery?

Objective

Shorten marine acquisition times & increase source sample density.

Questions: Does increased variability of firing times improve recovery?

If transform-domain recovery fails are there alternatives?

Regular vs. jittered locations

regularly sampled spatial grid

almost regularly sampled spatial grid (low variability)

irregularly sampled spatial grid (high variability)

Jittered sampling in marine

High-variability:

transform-based deblending

Low-variability:

rank-revealing source separation

acquire in the field on irregular grid (subsampled shots w/ overlap between shot records)

would like to have on regular grid (all shots w/o overlaps between shot records)

Sparsity-promoting recovery

 $\mathbf{S}^{\mathbf{H}}$ \mathbf{A} \mathbf{b} $\tilde{\mathbf{x}}$ a transform domain synthesis measurement operator : $\mathbf{MS^{H}}$, \mathbf{M} is a blending operator blended data estimated curvelet coefficients for source separated wavefield

periodic

low variability

high variability

periodic

low variability

high variability

periodic

low variability

high variability

Time-jittered OBC acquisition [1 source vessel, speed = 5 knots, underlying grid: 25 m] [# jittered source locations is half # sources (per array) in ideal periodic survey w/o overlap]

Recovery with FDCT ('binning') ["deblending" from jittered 50m grid to regular 25m grid]

0.5-(s) Time 1.5-2 -1000 2000 3000 0 Source (m)

receiver gather

difference

Sparsity-promoting recovery on irregular grid w/ NFDCT (17.1 dB) ["deblending" from jittered 50m grid to regular 25m grid]

receiver gather

Sparsity-promoting recovery on irregular grid w/ NFDCT (17.1 dB) ["deblending" from jittered 50m grid to regular 25m grid]

receiver gather

Sparsity-promoting recovery on irregular grid w/ NFDCT (17.1 dB) ["deblending" from jittered 50m grid to regular 25m grid] (difference)

receiver gather

Time-jittered OBC acquisition [2 source vessels, speed = 5 knots, underlying grid: 12.5 m] [# jittered source locations is one-fourth # sources (per array) in ideal periodic survey w/o overlap]

Sparsity-promoting recovery on irregular grid with NFDCT (16.8 dB)

["deblending" from jittered 50m grid to regular 12.5m grid]

receiver gather

Summary

	jittered to regular (m)	recovery with FDCT [SNR (dB)]	recovery with NFDCT [SNR (dB)]	
1 source vessel (2 airgun arrays)	50 to 25	14.2	17.1	
	50 to 12.5	11.1	12.5	
2 source vessels (2 airgun arrays per vessel)	50 to 25	19.7	21.5	
	50 to 12.5	15.0	16.3	

Source separation via rank minimization

Blended data

Rank minimization

min X

number of singular values of ${f X}$

for blended acquisition:

D: blended data

 $\mathcal{A} := [\mathbf{MS^{H}} \ \mathbf{MTS^{H}}]$ time delay matrix

rank(**X**) s.t. $\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \leq \epsilon$

unblended data matrix for

number of singular values of ${f X}$

Nuclear-norm minimization convex relaxation of rank-minimization

[Recht, et. al., 2010, Aravkin et.al., '13]

$$\min_{\mathbf{X}} ||\mathbf{X}||_* \quad \text{s.t.}$$

sum of singular values of ${f X}$

prohibitively expensive (search over all possible values of rank)

rank(**X**) s.t. $\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \leq \epsilon$

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \leq \epsilon$

Haneet Wason, Rajiv Kumar, Aleksandr Y. Aravkin, and Felix J. Herrmann, "Source separation via SVD-free rank minimization in the hierarchical semi-separable representation". 2014.

Low-rank structure – frequency slice at 25 Hz in source-receiver domain?

without delay

with delay

Low-rank structure – frequency slice at 25 Hz

in midpoint-offset domain?

without delay

with delay

Decay of singular values

source-receiver domain

midpoint-offset domain

Rank vs. sparsity

rank-minimization (midpoint-offset domain)

HSS representation

[Chandrasekaran, et. al., 2006]

level - 1

level - 2

HSS representation

[Chandrasekaran, et. al., 2006]

level - 1

without delay

with delay

Source separation via sparsity-promotion

blended shot

source 1

source 2 (time-delayed)

Source separation via rank-minimization

blended shot

source 1

source 2 (time-delayed)

<u>Haneet Wason</u> and <u>Felix J. Herrmann</u>, "<u>Time-jittered ocean bottom seismic acquisition</u>", SEG, 2013 <u>Hassan Mansour</u>, <u>Haneet Wason</u>, <u>Tim T.Y. Lin</u>, and <u>Felix J. Herrmann</u>, "<u>Randomized marine acquisition with</u> <u>compressive sampling matrices</u>", Geophysical Prospecting, vol. 60, p. 648-662, 2012

Observations

Recoveries entail joint interpolations & deblendings/source separations

Question:

Does increased variability of firing times improve curvelet recovery? ✓ yes, but only for ocean bottom acquisition – towed arrays are more challenging

Haneet Wason and Felix J. Herrmann, "Time-jittered ocean bottom seismic acquisition", SEG, 2013 Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, "Randomized marine acquisition with compressive sampling matrices", Geophysical Prospecting, vol. 60, p. 648-662, 2012 Haneet Wason, Rajiv Kumar, Aleksandr Y. Aravkin, and Felix J. Herrmann, "Source separation via SVD-free rank minimization in the hierarchical semi-separable representation". 2014.

Observations

Recoveries entails joint interpolations & deblendings

Questions:

Does increased variability of firing times improve curvelet recovery? ✓ yes, but only for node acquisition since it is challenging for towed arrays If transform-domain recovery fails are there alternatives?

- \checkmark yes, rank revealing techniques succeed where curvelet-domain methods fails

Conventional vs. time-jittered sources - undersampling ratio = 2, 2 source arrays

(for monitor) • Array 1 * Array 2 50

jittered acquisition 2

"blended" shot gathers

number of shots = 100/2 = 50 (25 per array) spatial sampling: **50.0 m (jittered)** vessel speed: 2.50 m/s recording time \approx 1000.0 s/2 = (500.0 s)

Measurements - undersampled and blended

baseline

monitor

Stacked sections

Original baseline

Original 4-D signal

10 X

Stacked sections - 100% overlap in acquisition matrices

IRS (22.7 dB)

Stacked sections - 50% overlap in acquisition matrices

IRS (9.7 dB)

Stacked sections - 20% overlap in acquisition matrices

IRS (10.2 dB)

Summary (SNR (dB))

overlap	baseline		monitor		4-D signal	
	IRS	JRM	IRS	JRM	IRS	JRM
100%	23.0	21.6	23.1	21.7	22.7	22.4
50%	23.0	28.9	25.5	28.9	9.7	18.2
20%	23.0	31.8	23.5	31.9	10.2	14.7

