Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

A stochastic quasi-Newton McMC method for uncertainty quantification of full-waveform inversion Zhilong Fang, Felix J. Herrmann and Chia Ying Lee

Motivation

Confidence interval

Bayesian theory

Deterministic inverse problem: $\mathbf{m}^* = \arg\min(\frac{1}{2N_s}\sum_{1}^{N_s} ||f_i(\mathbf{m})|)$

Statistical inverse problem with Bayesian theory:

$$\pi_{post}(\mathbf{m}) := \pi(\mathbf{m}|\mathbf{d}_{obs}) \propto$$

where **m** is the model parameter, and \mathbf{d}_{obs} is the observed data

$$|-\mathbf{d}_{iobs}||_{W_i}^2 + \frac{1}{2} ||\mathbf{m} - \overline{\mathbf{m}}||_R^2$$

 $\pi_{prior}(\mathbf{m})\pi(\mathbf{d}_{obs}|\mathbf{m})$

(James Martin et al, 2012)

Bayesian theory

Assume:

prior model distribution ~ $\mathcal{N}(\mathbf{m}_{prior}, \Gamma_{prior})$.

Negative log-posterior of the posterior pdf: $V(\mathbf{m}) := -\log \pi_{post}(\mathbf{m}) := \frac{1}{2N_s} \sum_{1}^{N_s} ||f|$ $\mathbf{m}_{MAP} = \mathbf{m}^*$

$$\|\mathbf{x}\|_{\Gamma_{noise}^{-1}}^2 := \mathbf{x}^T \Gamma_{noise}^{-1} \mathbf{x}$$

noise ~ $\mathcal{N}(0, \Gamma_{noise})$

$$f_i(\mathbf{m}) - \mathbf{d}_{iobs} \|_{\Gamma_{inoise}}^2 + \frac{1}{2} \|\mathbf{m} - \mathbf{m}_{prior}\|_{\Gamma_{prior}}^2$$

Sampling the posterior pdf

How to obtain the posterior probability density function?

Markov chain Monte Carlo method ? Metropolis - Hasting method

At sample \mathbf{m}_k Draw sample y from the proposal distribution $\tilde{\pi}_k(\mathbf{m})$ if $\min(1, \frac{\pi_{post}(\mathbf{y})\tilde{\pi}_{y}(\mathbf{m}_{k})}{\pi_{post}(\mathbf{m}_{k})\tilde{\pi}_{k}(\mathbf{y})}) > \alpha$

set $\mathbf{m}_{k+1} = \mathbf{y}$

else

regenerate y end

How to obtain the posterior probability density function?

Stochastic Newton MCMC ? $V(\mathbf{m}) := -\log \pi_{post}(\mathbf{m}) := \frac{1}{2N_s} \sum_{k=1}^{N_s} ||f_i(\mathbf{m})| \leq N(\mathbf{m}_k - \mathbf{H}_k^{-1} \mathbf{g}_k, \mathbf{H}_k)$ $\mathbf{L}^T \left[\mathbf{H}_{\text{misfit}} \right] \mathbf{L}$ $n \times n$ $n \times n$ $n \times n$

$$(\mathbf{m}) - \mathbf{d}_{iobs} \|_{\Gamma_{inoise}^{-1}}^{2} + \frac{1}{2} \|\mathbf{m} - \mathbf{m}_{prior}\|_{\Gamma_{prior}^{-1}}^{2}$$
$$\mathbf{H}_{k}^{-1})$$
$$\approx \left[\mathbf{V}_{r}\right] \left[\mathbf{D}_{r}\right] \left[\mathbf{V}_{r}^{T}\right]$$
$$n \times r \quad r \times r \quad r \times n$$

 $r \ll n$ (James Martin *et al*, 2012)

(James Martin et al, 2012)

Challenges:

Low - rank approximation may not be correct.

- The computational cost of estimating Hessian is huge.
- The computational cost of calculating the posterior distribution probability density function is huge.

Computational Cost ~ $\mathcal{O}(N_{\text{sample}} * N_s)$

BFGS Hessian

At the stage k: approximated Hessian \mathbf{B}_k and gradient \mathbf{g}_k , Update \mathbf{B}_k by adding two rank one matries: $\mathbf{B}_{k+1} = \mathbf{B}_k + \mathbf{B}_k$ where \mathbf{B}_{k+1} should satisfy $\mathbf{B}_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_{k+1})$ No additional computational cost!!! $\mathbf{B}_{k+1} = \mathbf{B}_k + \mathbf{B}_k$ $\mathbf{B}_{k+1}^{-1} = \left(\mathbf{I} - \frac{\mathbf{s}_k}{\mathbf{v}_k}\right)$

$$\mathbf{U}_k + \mathbf{V}_k$$

$$\begin{aligned} \mathbf{x}_{k} &) = \mathbf{g}_{k+1} - \mathbf{g}_{k} \\ \mathbf{y}_{k} &= \mathbf{g}_{k+1} - \mathbf{g}_{k} \\ \mathbf{y}_{k} &= \mathbf{x}_{k+1} - \mathbf{x}_{k}, \end{aligned}$$
$$\begin{aligned} & \frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}} - \frac{\mathbf{B}_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{T} \mathbf{B}_{k}}{\mathbf{s}_{k}^{T} \mathbf{B}_{k} \mathbf{s}_{k}} \end{aligned}$$
$$\begin{aligned} & \frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}} - \frac{\mathbf{B}_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{T} \mathbf{B}_{k} \mathbf{s}_{k}}{\mathbf{s}_{k}^{T} \mathbf{B}_{k} \mathbf{s}_{k}} \end{aligned}$$

I-BFGS Hessian with pseudo GN Hessian as a starter

Limited memory BFGS Hessian:

$$\{\mathbf{s}_i\}_{k-M+1 \le i \le k}$$
$$\{\mathbf{y}_i\}_{k-M+1 \le i \le k}$$
$$\mathbf{B}_0^{(k)}$$

Choice of $\mathbf{B}_{0}^{(k)}$: pseudo GN Hessian

(Choi, Y, et al, 2012)

Randomized source subsampling

To speed up the computation of posterior pdf: $V(\mathbf{m}) := -\log \pi_{post}(\mathbf{m}) := \frac{1}{2N_s} \sum_{i=1}^{N_s} ||f_i(\mathbf{m}) - \mathbf{d}_{ic}||$

Randomized source subsampling: $\frac{1}{N_s} \sum_{\mathbf{I}}^{N_s} \|f_i(\mathbf{m}) - \mathbf{d}_{iobs}\|_{\Gamma_{inoise}^{-1}}^2$

(Farbod Roosta-Khorasani et al, 2013; Eldad et al, 2012; Michael P. Friedlander et al, 2013, van Leeuwen et al, 2013)

$$f_i(\mathbf{m}) - \mathbf{d}_{iobs} \|_{\Gamma_{inoise}}^2 + \frac{1}{2} \|\mathbf{m} - \mathbf{m}_{prior}\|_{\Gamma_{pr}}^2$$

$$= \frac{1}{\|\mathcal{I}_s\|} \sum_{i \in \mathcal{I}_s} \|f_i(\mathbf{m}) - \mathbf{d}_{iobs}\|_{\Gamma_{inoise}}^2 + \epsilon$$

Randomized source subsampling

Computational Cost: $\mathcal{O}(N_s) \to \mathcal{O}(N_{rs}), N_{rs} << N_s$

- Subset misfit vs Full misfit

Randomized source subsampling

Computational Cost: $\mathcal{O}(N_s) \rightarrow \mathcal{O}(N_{rs})$

5 / 91 shots

Numerical Experiments

Camambert model

- Statistical parameter to be inverted:
- Standard deviation : σ
- **Confidence interval:** $P(\mathbf{m} \in \mathbf{I}_{ci}) \geq \alpha$

- Acquisition Geometry:
- 26 shots
- 51 receivers
- 10 frequencies

Standard Deviation

Nrs = 10

Standard Deviation

Standard Deviation

Numerical Experiments

BG model

Acquisition Geometry:

- 91 shots
- 451 receivers

15 frequencies from 3Hz to 17Hz

Initial model

MAP

Conclusions

- estimating the Hessian.
- decrease the computational cost of the McMC.

• Using the L-BFGS Hessian, we reduce the computational cost of

Using the randomized source sub-sampling method, we

Future Work

- function.
- Uncertainty quantification for 3D FWI.

• Use penalty method frame work to reset up the probability distribution

• Use different sampling method to analyze the posterior distribution.

Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

