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Main problem

Goal: Acquire an analog signal and store/process/transmit it digitally. Main focus in this meeting.

Signal Model: x is a high dimensional signal (say in RN ) that is sparse w.r.t. some basis/frame.

Sampling technique: Compressive: Non-adaptive, linear “generalized measurements” 〈φi, x〉.

x ∈ RN Φ−→ y ∈ Rm Q−→ q ∈ Am E−→ q̃
∆Q,E−→ x# ∈ RN

Here: Φ is an m×N compressive sampling matrix (m� N), e.g., random subsampling.

Problem: The compressive samples are analog quantities. Accordingly:

Compressive sampling is an efficient dimension reduction method.

Dimension reduction is not compression: we need to have error analysis in terms of the bit budget.

We will focus on this (and putting “compressive” back to “compressive sampling”).
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Here: Φ is an m×N compressive sampling matrix (m� N).

Want: Design Q, E , and ∆Q,E such that

supx∈K ‖x# − x‖ is (nearly) optimally small for a given bit budget R.

Q is robustly implementable on analog hardware.

∆Q,E is tractable.
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Why? Any applications in seismic?

Signal acquisition devices, e.g., geophones, have several design bottlenecks:

battery life (wireless)

hardware complexity

storage

Given the humongous size of the data we collect, we want to explore if we can incorporate compressive
sensing into the analog-to-digital conversion stage where

we can compress without requiring to perform transform coding (thus save on storage and battery
life required for transmission)

we collect less samples (thus save on storage and battery life).

The schemes we will propose are simple to implement, thus realistic. In addition, they achieve
exponential accuracy.
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Notations: compressed sensing

x ∈ RN is k-sparse if x has at most k non-zero entries.

ΣNk := {x ∈ RN : x is k-sparse}

Measurement matrix: Φ, an m×N real matrix.

Measurements: y = Φx+ e (e denotes additive noise)

Dimensional setting: k < m < N .

Main conclusion of CS. Suppose x ∈ Σk or can be well approximated from Σk. Given the (noisy)
measurements y = Φx+ e, one can recover x exactly (approximately), in a computationally efficient
manner. The reconstruction is robust to noise and stable with respect to model mismatch.
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Notations: quantization

Quantizer: Any map Q : Rm 7→ Am where the alphabet A is a finite or discrete set.

Scalar quantizer with alphabet A is the map

QA : x ∈ R 7→ arg min
v∈A
|x− v| ∈ A.

Bit depth of the scalar quantizer QA is b = log2 |A|.

Midrise uniform quantizer with step size δ: QAδL with

AδL = {±(2j + 1)δ/2 : j ∈ [L]}.

Corresponding bit-depth: b = log2(2L) bits.
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A midrise quantizer

−5 −4 −3 −2 −1 0 1 2 3 4 5−4

−3

−2

−1

0

1

2

3

4

u
Q

A
(u

)

Above:

A = {−3.5,−2.5,−1.5,−0.5, 0.5, 1.5, 2.5, 3.5} =: A1
3,

b = log2 8 = 3

|x−QA(u)| ≤ 1/2 provided |u| ≤ 4.

The midrise scalar quantizer saturates if |u| > 4
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An illustrative example

Below, x ∈ R1024, 40-sparse w.r.t. Fourier basis. We collect 200 uniformly random samples in the time
domain and reconstruct using SPGL1. Note: ‖x− x̃‖∞ ≤ 3× 10−2
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An illustrative example
Next, quantize the compressive samples:
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An illustrative example
Compare with direct quantization using the same bit-budget.
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An illustrative example

In the above example:

The signal x ∈ RN with N = 1024.

The sparsity basis: discrete Fourier basis. Specifically, X = DFT(x) is k = 40 sparse.

Sampling scheme: uniformly random subsampling: collect m = 200 samples.

With no quantization, we can recover x perfectly: error ∼ 10−13.

With a total bit budget R = 600

optimal quantization: max error ∼ 1.6× 10−4

quantizing compressive samples: max error ∼ 0.46× 10−2

“Loss in bit depth”= log2(max err CS/max err opt) ≈ 4.7 bits
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Perspective

The above discussion highlights a number of important issues: Let’s rephrase what we have observed:

In the optimal case, we used b1 = (R− log2

(
N
k

)
)/k bits to round-off each non-zero entry (and use

the symmetry of the Fourier coefficients). The resulting `∞ approximation error was 2−b1 . When
we plug in numbers, b1 ≈ 12.5.

Using the same bit budget R, in the CS case, we get an accuracy of 2−b2 with b2 ≈ 7.8.

In the CS case, to get an approximation with “12.5-bit accuracy”, we would need to use 5
additional bits per measurement.

In the optimal case, the total bit budget is 600 whereas to get the same accuracy in the CS case,
we need a bit budget of 1600 – not compressed.

More importantly, if we want to have a high-accuracy approximation using CS, say 24 bits, in the
above example we need to quantize each CS measurement using a uniform scalar quantizer with a
depth of 29 bits! This bit depth overhead is given by

bMSQ = bopt +
⌈

log2 C
√
k
⌉
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Observations and issues

Rounding off CS measurements gives exponential accuracy in terms of the bit budget:

‖x− x̃MSQ‖2 ≤ Ck2−R/(C1k log(N/k)).

However, this is not very useful:

Overhead in terms of the bit budget: roughly, RCS ≈ m
k Ropt.

Problem: Source coding is combined with the A/D conversion:

For a b-bit quantization of each measurement, a quantizer with bit depth of b-bits must be
implemented on hardware.

There is a physical limit to how small this step size can be (approximately b is 20-21 bits).
This limits the best accuracy one can obtain in the CS setting.
Including the overhead log2 C

√
k ≈ 8 for a 1000-sparse signal, the limit on accuracy is 12-13

bits.
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Coarse quantization

Main Problem: Increasing the bit depth of a quantizer indefinitely is not possible: there are physical
constraints that make this expensive and after a point impossible. Need to devise quantization schemes
such that

they can be implemented using low bit depth scalar quantizers, i.e., scalar quantizers with a
relatively large step size δ. Such quantizers are cheap and require low power.

they yield approximations to the original signal with error much smaller than O(δ) (for example,
by increasing the number of measurements),

they yield compressed representations after very light computation (again low battery and low
storage)

Such quantization schemes are called coarse quantization schemes.
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Σ∆ quantization

Our coarse quantization method will be rth-order Σ∆ quantization: Let y = Φx where Φ ∈ Rm×N
is a frame or a compressive sampling matrix.

(∆ru)j = yj − qj .

Here qj ∈ AδL are chosen such that ‖u‖∞ . d – stable rth-order Σ∆ scheme In this case:

y − qΣ∆ = Dru, with ‖u‖∞ . d

where D =



1 0 0 0 · · · 0
−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 0 · · · −1 1 0
0 0 · · · 0 −1 1


m×m

.
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Coarse quantization – classical setup

Coarse quantization in the classical setup. Given a fixed δ, as large as δ = 2 in the 1-bit case, i.e.,
when A = {±1}, increase the number of samples and exploit redundancy.
Here “samples” are typically basis or frame coefficients, and λ > 1 is the oversampling factor.

MSQ yields approximation error ∼ λ−1/2 (under white noise assumption).

Σ∆ schemes exploit redundancy more efficiently: an rth order Σ∆ quantizer yields approximations
with error:

O(λ−r) in the bandlimited setting (Daubechies-DeVore, Güntürk)

O(λ−r) in the finite frame setting: Blum-Lammers-Powell-Y (“smooth” frames),
Güntürk-Lammers-Powell-Saab-Y (Gaussian random frames), Krahmer-Saab-Y (sub-Gaussian
random frames).
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Σ∆ quantization – error vs. bits used

In the formulas above, λ ∼ R where R is total number of bits used (per Nyquist interval in the
bandlimited setting). That is, using an rth order Σ∆ quantizer, we get an approximation with error

‖x− x̃r‖ ≤ CrR−r.

This is significantly inferior compared to the optimal error: O(2−cR). However, when we optimize the
order r of the Σ∆ scheme:

approx. error ∼ 2−0.1R in the bandlimited setting (Deift- Krahmer-Güntürk)

approx. error ∼ 2−C
√
R in the finite frame setting (Krahmer, Saab, Ward)

A recent result by Iwen and Saab: Exponential accuracy without optimizing the order, but instead
compressing the resulting quantized values further.
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Coarse quantization – compressed sensing

What do we know? Set R ∼ m/k.

MSQ: best one can hope for is O((R)−1) (GLPSY – follows from a theorem of
Goyal-Vetterli-Thao on frame quantization).

Σ∆: Using an rth-order Σ∆ scheme to quantize compressive samples of x

Φ is Gaussian or sub-Gaussian: distortion ∼ R−α(r−1/2) via a two-stage scheme: (i) recover
the support, (ii) refine using Sobolev duals. (GLPSY, 2013), (Krahmer-Saab-Y, 2014)

Two main disadvantages of Σ∆ with the two-stage scheme

Smallest non-zero entry of x must be ≥ Crδ. This essentially rules out low-bit schemes, e.g.,
1 or 2 bits per sample. Also, the set of allowed signals depends on the order r.
Not robust to noise and not stable with compressible signals.
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Σ∆ for CS: A one-stage reconstruction method

Original signal: x ∈ RN sparse or compressible.

Compressive samples: y = Φx+ w, ‖w‖∞ ≤ ε

After A/D conversion: q := QrΣ∆(y) where QrΣ∆ is a stable rth-order Σ∆ quantizer with step size δ.
Then

Φx− q = Dru, with ‖u‖∞ ≤ C(r)δ

where D is bidiagonal with D(i, i) = 1 and D(i+ 1, i) = −1, i = 1, . . . ,m.

Proposed one-stage reconstruction algorithm (R. Saab, R. Wang,Y)

(x̂, v̂) := arg min
(z,v)
‖z‖1 subject to ‖D−r(Φz + v − q)‖2 ≤ c(r)

√
m

and ‖v‖2 ≤ ε
√
m,
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Σ∆ for CS: A one-stage reconstruction method

In the setting described above:

x ∈ RN , y = Φx+ w with ‖w‖∞ ≤ ε

q = QrΣ∆(y)

x̂ is obtained using the one-stage algorithm.

Theorem (Saab-Wang-Y, 2014)

If Φ belongs to a wide class of matrices (that include sub-Gaussian random matrices whp) with
m ≥ mmin = C0k log(N/k), we have

‖x− x̂‖2 ≤ C1(r)
(m
k

)−a(r−1/2) + C2
σk(x)√

k
+ C3

√
m

mmin
ε.
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One stage reconstruction – numerical experiments

100 200 400 600 800 1000
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m
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1st order Σ∆
2nd order Σ∆
O(m−0 .5)

O(m−1 .5)

N = 1000, k = 10, δ = 0.01, m varies between 100 and 100, Φij ∼ N (0, 1), worst case error among 80
independent trials.

Özgür Yılmaz Analog-to-digital conversion in compressive sampling



One stage reconstruction – numerical experiments

10210−3

10−2

10−1

100

m

∥x̂
−

x
∥ 2

 

 

1st order Y6
2nd order Y6

102

10−2

m

∥x̂
−

x
∥ 2

 

 

1st order Y6
2nd order Y6

Left: Compressible x with x[j] ∼ j−2.
Right: Noisy measurements: y = Φx+ e with ‖e‖∞ = 0.001, x is 10-sparse with standard Gaussian
non-zero entries.

In both cases: N = 1000, m varies between 100 and 1000, Φij ∼ N (0, 1), δ = 0.01, and we show the
worst case error among 10 independent trials.
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One stage reconstruction: is this good enough?

Σ∆ quantization and one stage reconstruction algorithm:

Utilizes “redundancy’’: more measurements gives better reconstruction with the same scalar
quantizer.

When we optimize the order r, we get root exponential accuracy with respect to the number of
measurements, equivalently, bit budget.

Stable and robust!

However: In the above examples:

We use a quantizer with δ = 0.01 to quantize measurements in [−10, 10].

This gives a bit depth of 11 bits per measurement.

Approximation error approximately 2−9 with a total bit budget of 7000 bits.

Compare this with less than 200 bits in the optimal case, and about 800 bits if we can quantize as
finely as we want.

Özgür Yılmaz Analog-to-digital conversion in compressive sampling



One stage reconstruction: is this good enough?

Σ∆ quantization and one stage reconstruction algorithm:

Utilizes “redundancy’’: more measurements gives better reconstruction with the same scalar
quantizer.

When we optimize the order r, we get root exponential accuracy with respect to the number of
measurements, equivalently, bit budget.

Stable and robust!

However: In the above examples:

We use a quantizer with δ = 0.01 to quantize measurements in [−10, 10].

This gives a bit depth of 11 bits per measurement.

Approximation error approximately 2−9 with a total bit budget of 7000 bits.

Compare this with less than 200 bits in the optimal case, and about 800 bits if we can quantize as
finely as we want.

Özgür Yılmaz Analog-to-digital conversion in compressive sampling



Compressing the Σ∆ bit stream

Question: Can we compress the resulting Σ∆ quantized measurements even further?
Answer: Yes! With a scalar quantizer of bit-depth 5 (5 bits per measurement), we can get the same
accuracy as above with a bit budget of less than 4500 bits.

x ∈ RN Φ−→ y ∈ Rm Q−→ qΣ∆ ∈ Am E−→ q̃
∆Q,E−→ x# ∈ RN

Color code: Acquisition (CS), A/D conversion (Σ∆), Compression, Decoding

Acquisition: CS with Bernoulli Φ

A/D conversion: Σ∆ quantization of order r.

Focus on designing E (compression)and ∆Q,E (decoding).
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New scheme – compression

Let x ∈ RN , Φ ∈ Rm×N , y = Φx. Fix an alphabet A and let q ∈ Am be the rth-order Σ∆
quantization y.

Compression: Based on a recent construction by Iwen and Saab in the setting of frames. Encode Σ∆
quantized mesurements q ∈ Am using the map

E : q 7→ BD−rq =: q̃

where B is an L×m Bernoulli matrix with L = mmin ∼ k log(N/k).

Note that:

Assign binary labels to the entries of q̃: will need mr+1|A| such labels.

Accordingly: need R = L
(
(r + 1) log2(m)|+ log |A|

)
bits to represent q̃.

If we keep L fixed as m increases—and distortion decreases as O(m−r)—this will give us
exponential accuracy if we can decode.
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New scheme – decoding

Finally, we need a decoder ∆Q,E : q̃ 7→ x# such that ‖x# − x‖ is small.

Decoder: Based on a modification of the one-stage recovery algorithm. Specifically:

Recover q̃ = BD−rqΣ∆ from the binary labels,

Obtain x# by solving

x# := arg min ‖z‖1 subject to ‖BD−rΦz − q̃‖2 ≤ C(r)δ
√
mL.

Note that the size of this optimization problem is significantly smaller than the one without
compression. For example, m = 1000, L = 100.
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New scheme – exponential accuracy

Theorem. (Wang, Saab, Y, 2014)

Let Φ ∈ Rm×N and B ∈ RL×m be Bernoulli matrices where L = c3k log(N/k) and m ≥ L for some
k < m. Then with high probability the following holds for all k-sparse x ∈ RN with ‖x‖2 ≤ 1

3
√
k
.

Denote by q = QrΣ∆(Φx) with alphabet A and r ≥ 2. Let E(q) = BD−rq be the encoding of q. Then
(i) E(q) can be represented by R = L(2 logm+ log |A|+ 1) bits,
(ii) Approximating x by the decoder above yields x# which satisfies

‖x̂− x‖2 ≤ c2−
R
L
r−3/2
2(r+1) =: D

where c is a constant that depends on L and the Σ∆ scheme.
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Remarks

Note that:

Above, we keep L and the quantization alphabet A for the Σ∆ quantizer fixed, i.e., we have a
coarse quantization scheme.

We increase the bit-budget, i.e., R, by increasing the number of measurements m.

Surprisingly, we can utilize these additional bits (almost) as efficiently as if we are increasing the
bit depth, i.e., refining A.

This scheme gives us exponential accuracy with Σ∆ schemes of any fixed order r, i.e., no need for
optimizing the order for the given bit budget R.

Decoding from the quantized and compressed measurements is done using a convex optimization
algorithm.

The results are valid for 1-bit Σ∆ quantized compressed sensing as well.
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Numerical experiments

Let: N = 1024, k = 10, Φ ∈ Rm×N Bernoulli, m ∈ {100 · 2p : p = 0, . . . , 7}

First: distortion vs. bit budget when we use the new scheme with Σ∆ schemes of order r = 1 with
δ = 0.01 (what we had before):

2000 2500 3000 3500 4000−10

−9
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−7

−6

−5

rate (R) in bits

lo
g 2(||

x−
z|

| 2)

 

 

−0.0025007R+−0.7204
−0.0025926R+−0.0074923
experimental (mean)
experimental (max)

Note: We get the same accuracy level (∼ 2−9) with less than 3500 bits instead of 7000 bits of
“pre-compression”. How about larger δ, i.e., coarser quantization?
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Numerical experiments

Again: N = 1024, k = 10, Φ ∈ Rm×N Bernoulli, m ∈ {100 · 2p : p = 0, . . . , 7}.

Next: distortion vs. bit budget when we use the new scheme with Σ∆ schemes with δ = 0.5!

Σ∆ quantizer of order r = 1

1500 2000 2500 3000 3500−5

−4

−3

−2

−1

0

rate (R) in bits

lo
g 2(||

x−
z|

| 2)

 

 

−0.0023015R+2.8161
−0.0023622R+3.2993
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Note: We still get the same accuracy level (∼ 2−9) with approximately 4500 bits instead of 7000 bits
of “pre-compression”, this time with very coarse quantization (scalar quantizer with depth of 3.5 bits).
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Next: distortion vs. bit budget when we use the new scheme with Σ∆ schemes with δ = 0.5!
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Note: We still get the same accuracy level (∼ 2−9) with approximately 4500 bits instead of 7000 bits
of “pre-compression”, this time with very coarse quantization (scalar quantizer with depth of 3.5 bits).
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Note: We still get the same accuracy level (∼ 2−9) with approximately 4500 bits instead of 7000 bits
of “pre-compression”, this time with very coarse quantization (scalar quantizer with depth of 3.5 bits).
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Numerical experiments – big picture
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Left: MSQ
Middle: Σ∆ with r = 1
Right: Σ∆ with r = 2
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One-bit compressed sensing

Here: N = 4000, k = 10, Φ ∈ Rm×N , m ∈ {100 · 2p : p = 0, . . . , 7}.

Distortion vs. bit budget when we use the new scheme with one-bit Σ∆ schemes with δ = 6!
Σ∆ quantizer of order r = 1
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One-bit compressed sensing

Here: N = 4000, k = 10, Φ ∈ Rm×N , m ∈ {100 · 2p : p = 0, . . . , 7}.

Distortion vs. bit budget when we use the new scheme with one-bit Σ∆ schemes with δ = 6!
Σ∆ quantizer of order r = 2
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One-bit compressed sensing

Here: N = 4000, k = 10, Φ ∈ Rm×N , m ∈ {100 · 2p : p = 0, . . . , 7}.

Distortion vs. bit budget when we use the new scheme with one-bit Σ∆ schemes with δ = 6!
Σ∆ quantizer of order r = 3
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Concluding remarks

Efficient quantization for compressed sensing is crucial.

Fine quantization schemes have physical limitations which in turn limit the best accuracy one can
obtain.

Coarse quantization schemes, such as Σ∆ quantization, provide a remedy.

We introduce a novel CS quantization/compression/recovery scheme that achieves exponential
accuracy with respect to bit budget while using a fixed, coarse quantization alphabet.

Done? Our “bit counting” method is rudimentary: it does not incorporate the structure of the
quantized values that are generated by Σ∆ schemes. It might be possible to compress even
further.
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