Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Randomization and repeatability in time-lapse marine acquisition Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann

Monday, December 8, 14

Randomized sampling in marine [SINBAD 2013]

Motivation

What are the implications of randomization in time-lapse seismic?

Should we repeat in randomized marine acquisition?

Felix Oghenekohwo, Haneet Wason, and Felix J. Herrmann, "Compressive 4D---economic time-lapse seismic with randomized subsampling and joint recovery", submitted to Geophysics, October 2014.

Haneet Wason, and Felix J. Herrmann, "Time-jittered ocean bottom seismic acquisition", in SEG Technical Program Expanded Abstracts, 2013, p. 1-6. Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, "Randomized marine acquisition with compressive sampling matrices", Geophysical Prospecting, vol. 60, p. 648-662, 2012

Time-lapse seismic

Current acquisition *paradigm*:

- compute differences between baseline & monitor survey(s)
- hampered by practical challenges to ensure repetition

New compressive sampling paradigm:

- cheap subsampled acquisition, e.g. via time-jittered marine subsampling
- may offer *possibility* to *relax* insistence on *repeatability*
- exploits insights from distributed compressed sensing

repeat expensive dense acquisitions & "independent" processing

Time-lapse data

Baseline

Monitor

5

4-D signal [10 X]

time samples: **512** receivers: **100** sources: **100**

sampling time: **4.0 ms** receiver: **12.5 m** source: **12.5 m**

Sparse structure via curvelets

6

significant correlation between the vintages

Distributed compressed sensing -joint recovery model (JRM)

Key idea:

- use the fact that different vintages share common information
- components with *sparse* recovery

• invert for *common* components & *differences* w.r.t. the *common*

Time-lapse seismic -w/&w/orepetition

In an *ideal* world $(\mathbf{A}_1 = \mathbf{A}_2)$

- expect good recovery when difference is sparse
- but relies on "exact" repeatability...

In the *real* world $(\mathbf{A}_1 \neq \mathbf{A}_2)$

- no absolute *control* on *surveys*
- calibration errors
- noise...

• JRM simplifies to recovering the difference from $(\mathbf{b}_2 - \mathbf{b}_1) = \mathbf{A}_1(\mathbf{x}_2 - \mathbf{x}_1)$

Time-lapse seismic -w/&w/orepetition

In an *ideal* world $(\mathbf{A}_1 = \mathbf{A}_2)$

- expect good recovery when difference is sparse
- but relies on "exact" repeatability...

In the *real* world $(\mathbf{A}_1 \neq \mathbf{A}_2)$

- no absolute *control* on *surveys*
- calibration errors
- noise...

9

• JRM simplifies to recovering the difference from $(\mathbf{b}_2 - \mathbf{b}_1) = \mathbf{A}_1(\mathbf{x}_2 - \mathbf{x}_1)$

What does repetition really mean?

Context

Acquire randomized subsamplings for the baseline and monitor surveys

Questions:

- Should we repeat the surveys when doing randomized subsampling?

Aim: recovery of **both** vintages & time-lapse signal from incomplete data

Process/recover independently or jointly to exploit common features of surveys?

Stylized experiments

Stylized experiments

Conduct *many* CS experiments to compare

- *joint* vs *parallel* recovery of signals and the difference
- recovery with same, partially or completely independent matrices
- random acquisition with different numbers of samples

run 2000 different experiments & compute probability of recovery

Sparse signals

z ₀ con	<i>common</i> component				
z 1	<i>"difference"</i>				
\mathbf{Z}_2	<i>"difference"</i>				
\mathbf{x}_1	baseline				
\mathbf{x}_2	monitor				
\mathbf{x}_1 - \mathbf{x}_2	<i>time-lapse</i>				

Independent vs. joint recovery - 100% & 0% overlap in acquisition matrices

Vintages

4-D signal

Joint recovery - varying % of overlap in acquisition matrices

Vintages

4-D signal

Observations

The Joint Recovery Model (JRM) always gives superior results exploits shared information between the vintages

Aim: recovery of **both** vintages & time-lapse signal from incomplete data

Question:

Process/recover *independently* or *jointly* to exploit *common* features of surveys? processing jointly leads to improved recovery of both vintages & time-lapse signal

Synthetic seismic case study

Time-jittered marine acquisition on the grid

% repetition => "exact" repetition

No calibration errors

18

Method

- High permeability zone identified at a depth
- Fluid substitution (gas/oil replaced with brine) simulated to derive monitor velocity model
- Wavefield simulation to generate synthetic
- scales to 11733300 x 114882048

Simulated time-lapse data - time-domain finite differences

Baseline

Monitor

19

time samples: **512** receivers: 100 sources: **100**

sampling time: **4.0 ms** receiver: 12.5 m source: **12.5 m**

Time-jittered marine acquisition

irregularly sampled spatial grid

continuous recording START

continuous recording *STOP*

Conventional vs. time-jittered sources -subsampling ratio = 2, 2 source arrays

21

jittered acquisition 2 (monitor)

"blended" shot gathers number of shots = 100/2 = 50 (25 per array) spatial sampling: **50.0 m (jittered)** vessel speed: 2.50 m/s recording time \approx 1000.0 s/2 = (500.0 s)

Measurements - subsampled and blended

Baseline

22

Monitor recovery - 100% overlap in acquisition matrices

IRS [11.6 dB]

IRS residual

Monitor recovery - 50% overlap in acquisition matrices

IRS [11.0 dB]

IRS residual

Monitor recovery - 25% overlap in acquisition matrices

IRS [10.3 dB]

IRS residual

4-D recovery - 100% overlap in acquisition matrices

4-D recovery - 50% overlap in acquisition matrices

-

Source position (m)

[colormap scale: 10 X]

4-D recovery - 25% overlap in acquisition matrices

[colormap scale: 10 X]

Stacked sections

Baseline

29

4-D signal [10 X]

Stacked sections - 100% overlap in acquisition matrices

30

JRM [24.2 dB]

Stacked sections - 50% overlap in acquisition matrices

JRM [20.0 dB]

Stacked sections - 25% overlap in acquisition matrices

SNR (dB) for stacked sections - average of 5 experiments

overlap	baseline		monitor		4-D signal	
	IRS	JRM	IRS	JRM	IRS	JRM
100%	25.6 ± 1.2	23.9 ± 1.0	25.7 ± 1.1	24.0 ± 1.0	25.0 ± 0.9	23.4 ± 0.8
50%	25.6 ± 1.2	30.9 ± 1.3	24.3 ± 0.9	30.6 ± 1.4	10.1 ± 1.4	18.1 ± 0.9
25%	25.6 ± 1.2	34.4 ± 0.9	23.5 ± 1.3	33.6 ± 0.8	8.5 ± 1.3	15.9 ± 0.7

Observations

depending on the recovery of the vintages

Questions:

Process/recover *independently* or *jointly* to exploit *common* features of surveys? processing jointly leads to improved recovery of both vintages & time-lapse signal

Should we *repeat* the surveys when doing *randomized sub*sampling?

Seismic synthetics show that we do **not** necessarily have to insist on full repetition

Observations

depending on the recovery of the vintages

Questions:

Process/recover *independently* or *jointly* to exploit *common* features of surveys? processing jointly leads to improved recovery of both vintages & time-lapse signal

Should we *repeat* the surveys when doing *randomized sub*sampling?

What does repetition "in-the-field" mean?

Seismic synthetics show that we do **not** necessarily have to insist on full repetition

Notion of repetition

Time-jittered marine acquisition off the grid

With & without calibration errors

Randomized sampling in marine

Randomized sampling in marine

4-D recovery - 50% overlap in acquisition matrices, no calibration errors

4-D recovery - 50% overlap in acquisition matrices, calibration errors \approx 1.0 m (avg.)

4-D recovery - 50% overlap in acquisition matrices, calibration errors \approx 2.8 m (avg.)

4-D recovery - JRM - 50% overlap in acquisition matrices, w/ & w/o calibration errors

no error [12.2 dB]

error ≈ 1.0 m [8.5 dB]

42

error ≈ 2.8 m [3.8 dB]

4-D recovery - JRM - 50% overlap in acquisition matrices

no error [12.2 dB]

error ≈ 1.0 m [8.5 dB]

0% overlap

[2.0 dB]

error ≈ 2.8 m

[3.8 dB]

On the contrary,

calibration errors improve recovery of the vintages!

Monitor recovery - 50% overlap in acquisition matrices, no calibration errors

IRS [11.6 dB]

IRS residual

JRM [13.9 dB]

JRM residual

Monitor recovery - 50% overlap in acquisition matrices, calibration errors \approx 1.0 m (avg.)

IRS [11.4 dB]

IRS residual

JRM [14.5 dB]

JRM residual

Monitor recovery - 50% overlap in acquisition matrices, calibration errors \approx 2.8 m (avg.)

IRS [11.4 dB]

IRS residual

JRM [15.5 dB]

JRM residual

Monitor recovery - JRM - 50% overlap in acquisition matrices

no error [13.9 dB]

error ≈ 1.0 m [14.5 dB]

0% overlap

[18.3 dB]

error ≈ 2.8 m

Monitor residual - JRM - 50% overlap in acquisition matrices

no error

error ≈ 1.0 m

0% overlap

error ≈ 2.8 m

Observations

In the given context of randomized subsampling, calibration errors deteriorate recovery of the time-lapse signal

- *improve* recovery of the *vintages*

"Exact" repeatability of the surveys seems essential for good recovery of the time-lapse signal

Observations

depending on the recovery of the vintages

Questions:

Process/recover *independently* or *jointly* to exploit *common* features of surveys? processing jointly leads to improved recovery of both vintages & time-lapse signal

Should we *repeat* the surveys when doing *randomized sub*sampling? no, as long as one samples sufficiently to recover both vintages jointly calibration errors do not allow "exact" repeatability which is essential for good

- recovery of the time-lapse signal

Seismic synthetics show that we do **not** necessarily have to insist on full repetition

Future work

Application to field datasets

Software release: Time-jittered marine acquisition "off-the-grid"

Acknowledgements

Thank you for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

