Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Fast imaging with source estimation Ning Tu, Sasha Aravkin, Tristan van Leeuwen, Tim Lin

Tuesday, December 9, 14

Motivation

- wavelet as prior information.
- A wrong wavelet leads to a wrong image.

Conventional RTM requires knowledge of the source

Example

- SEG/EAGE salt model, 3.9km deep, 15.7km wide, 24.38m grid spacing
- ft.)spacing at 24.384m (80 ft.) depth
- 5Hz Ricker wavelet, 8s recording, 96 freq. samples 323 co-located sources/receivers with 48.768m (160) data modelled using iWave with absorbing surface, i.e.,

primaries only

True model

15000

Background model

15000

True model perturbations

RTM with the **true** source wavelet

15000

RTM with a **wrong** source wavelet (0.1s phase shift)

15000

Aravkin et al., 2012; Rickett, 2013; Li et al., 2013; Golub and Pereyra, 1973 & 2003; Kaufman, 1975; Herrmann and Li, 2012

Solution

We would like to borrow ideas from: source estimation by variable projection separable non-linear least-squares compressive imaging by sparse inversion Ieast-squares with sparse constraint

Question:

Are these two techniques compatible?

Problem formulation with unknown source

$$\min_{\mathbf{x},\boldsymbol{w}} f(\mathbf{x},\boldsymbol{w}) \doteq \sum_{i \in \Omega} \sum_{j \in \Sigma} ||\underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}[\mathbf{m}]|$$

subject to $\|\mathbf{x}\|_1 \leq \tau$.

- **C** : curvelet transform
- : subsampled source / receiver wavefields
- $\nabla \mathbf{F}$: linearized modelling operator
- Σ, Ω : randomized sim. sources / frequency subset
 - τ : sparsity constraint
 - \boldsymbol{w} : unknown source wavelet spectra

 $\mathbf{n}_0, \mathbf{w}_i \mathbf{s}_j] \mathbf{C}^* \mathbf{x} \|_2^2$

Challenges

The core gradient step becomes

 $\mathbf{x}^{k+1} = \mathcal{P}_{\mathcal{X}}[\mathbf{x}^k + \lambda \nabla_{\mathbf{x}} f(\mathbf{x}, \boldsymbol{w})]_{\mathbf{x}}$

with

$$\mathcal{X} \doteq \{\mathbf{x} : \|\mathbf{x}\|_1 \leq \tau\}.$$

Challenges:

- evaluation of the gradient
- computing the sparsity level

$$\mathbf{x}{=}\mathbf{x}^k, \mathbf{w}{=}\mathbf{w}^k \big]$$

Pratt R. G., 1999; Aravkin and van Leeuwen, 2012

Gradient descent using variable projection

With an estimate of the solution vector \mathbf{x} , the source estimates can be obtained by:

$$\widetilde{w}_i(\mathbf{x}) = \frac{\sum_{j \in \Sigma} < \underline{\mathbf{d}}_{i,j}, \nabla \mathbf{F}[\mathbf{m}_0, \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} >}{\sum_{j \in \Sigma} < \nabla \mathbf{F}[\mathbf{m}_0, \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x}, \nabla \mathbf{F}[\mathbf{m}_0, \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} >}.$$

Then the optimization problem is reduced to:

$$\begin{split} \min_{\mathbf{x}} \overline{f}(\mathbf{x}) &\doteq \sum_{i \in \Omega} \sum_{j \in \Sigma} \|\underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}\| \\ \text{subject to} \quad \|\mathbf{x}\|_1 \leq \tau, \end{split}$$

with $\nabla_{\mathbf{x}} \overline{f}(\mathbf{x}) = \nabla_{\mathbf{x}} f(\mathbf{x}, \widetilde{\boldsymbol{w}}(\mathbf{x})).$

- $[\mathbf{m}_0, \widetilde{w}_i(\mathbf{x}) \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} \|_2^2$

$\min_{\mathbf{x},\boldsymbol{w}} f(\mathbf{x},\boldsymbol{w}) \doteq \sum_{i \in \Omega} \sum_{j \in \Sigma} \|\underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}[\mathbf{m}_0, \boldsymbol{w}_i \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} \|_2^2$

subject to $\sum \sum \|\underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}[\mathbf{m}_0, \mathbf{w}_i \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} \|_2^2 \leq \sigma^2.$

Examples

Examples: using ideal data

input data simulated by linearized modelling using the same modelling engine as inversion:

 $\mathbf{d}_{i,j} = \nabla \mathbf{F}[\mathbf{m}_0, w_i \mathbf{s}_j] \mathbf{d}\mathbf{m}$

Fast inversion w/ source estimation: -no assumption made about the phase of the wavelet -initial guess simply an **impulse** with a **wrong** phase -simulation cost ~1 RTM of all the data

Examples: using ideal data Lateral distance (m) 5000 10000

True model perturbations

15000

Fast imaging w/ source estimation

15000

Examples: using ideal data

Source estimates of the last subproblem: after normalization

Examples: a more realistic setup

input data simulated using iWave, inverted using our in-house frequency-domain modelling engine:

$$\mathbf{d}_{i,j} = \mathbf{F}[\mathbf{m}, w_i \mathbf{s}_j]$$

$_{j}] - \mathbf{F}[\mathbf{m}_{0}, w_{i}\mathbf{s}_{j}]$

Examples: a more realistic setup Lateral distance (m) 10000 5000

15000

True model perturbations

Examples: a more realistic case Lateral distance (m) 10000 5000

Depth (m) 2000

 \mathbf{O}

15000

Fast imaging w/ true source

Examples: a more realistic case Lateral distance (m) 10000 5000

15000

Fast imaging w/ a wrong source, 0.1s phase error

Examples: a more realistic case Lateral distance (m) 10000 5000

 \mathbf{O}

15000

Fast imaging w/ source estimation

Examples: a more realistic case Lateral distance (m) 5000 10000

Fast imaging w/ source estimation, w/o rerandomization

15000

Examples: a more realistic case Lateral distance (m) 5000 10000

Fast imaging w/ source estimation, w/ rerandomization

 \mathbf{O}

Depth (m) 2000

15000

Examples: a more realistic case

Source estimates of the last subproblem: after normalization

Inversion vs RTM: spatial resolution Lateral distance (m) 10000 5000

 \mathbf{O}

Inversion w/ source **estimation**

Inversion vs RTM: spatial resolution Lateral distance (m) 10000 5000

15000

RTM with the **true** source wavelet

Inversion vs RTM: subsalt structures Lateral distance (m) 5000 10000

Depth (m) 2000

 \mathbf{O}

Inversion w/ source estimation

Inversion vs RTM: subsalt structures Lateral distance (m) 5000 10000

 \mathbf{O}

RTM with the **true** source wavelet

15000

Challenge

Non-deterministic amplitude ambiguity:

$$egin{aligned} f(\mathbf{x}, m{w}) &\doteq \sum_{i \in \Omega} \sum_{j \in \Sigma} \| \mathbf{w} \| \\ &= f(lpha \mathbf{x}, \frac{1}{lpha} m{w}) \end{aligned}$$

$\underline{\mathbf{d}}_{i,j} - abla \mathbf{F}[\mathbf{m}_0, \underline{w_i} \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} \|_2^2$

Solution

Incorporating surface-related multiples:

Deterministic source estimates:

$$\tilde{w}_{i}(\mathbf{x}) = \frac{\sum_{j \in \Sigma} \langle \underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}[\mathbf{m}_{0}, -\underline{\mathbf{d}}_{i,j}]\mathbf{C}^{*}\mathbf{x}, \nabla \mathbf{F}[\mathbf{m}_{0}, \underline{\mathbf{s}}_{j}]\mathbf{C}^{*}\mathbf{x} \rangle}{\sum_{j \in \Sigma} \langle \nabla \mathbf{F}[\mathbf{m}_{0}, \underline{\mathbf{s}}_{j}]\mathbf{C}^{*}\mathbf{x}, \nabla \mathbf{F}[\mathbf{m}_{0}, \underline{\mathbf{s}}_{j}]\mathbf{C}^{*}\mathbf{x} \rangle}$$

$-\nabla \mathbf{F}[\mathbf{m}_0, w_i \mathbf{\underline{s}}_j - \mathbf{\underline{d}}_{i,j}] \mathbf{C}^* \mathbf{x} \|_2^2$

True model perturbations

Fast imaging w/ source estimation

nce)	(m) 4000	5000	

Background model

Adding inversion result back to background model, no normalization of any kind

Example: using ideal data

Source estimates of the last subproblem, no normalization used

Fast imaging w/ true source

Simulation iWave Inversion in-house modelling engine

Fast imaging w/ source estimation

Caveat:

Deterministic amplitude difference from the true model

- iWave simulation
- in-house inversion

Example: a more realistic setup

blue: *true* source wavelet green: source *estimation*

Conclusions

Wrong source estimates lead to wrong images.

High-fidelity source estimation can be done in the inversion procedure in a **fast** fashion.

- by variable projection with a sparse constraint
- no assumption on the phase of the source is made

Amplitude ambiguity in the source can be mitigated by using surface-related multiple in the inversion.

To be continued...

Application to 2D field data, Wed 11:55 AM

Imaging the Nelson data set using surface-related multiples

Future work

- applications to 3D field data
- extension of the method to the time domain

ata to the time domain

Acknowledgements

Many thanks to the authors of iWave, SPGI1, SLIM FD modelling engine, the Sigsbee 2B model and the SEG/ EAGE salt model.

Thank you all for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

Pseudo code

Input:

total upgoing wavefield, background velocity model \mathbf{m}_0 , tolerance $\sigma = 0$, iteration limit k_{max}

Initialization:

iteration index $k \leftarrow 0$, subproblem index $1, \cdots, n_f$ while $k < k_{max}$ do $\Omega_l, \Sigma_l, \underline{\mathbf{d}}_{i,j}, \underline{\mathbf{s}}_j \leftarrow \mathsf{new independent draw}$ $\tau_l \leftarrow \text{determine from } \tau_{l-1}$ and σ by root finding on the Pareto curve $\mathbf{x}_{l} \leftarrow \begin{cases} \operatorname{argmin}_{\mathbf{x}} \sum_{i \in \Omega_{l}, j \in \Sigma_{l}} \|\underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}_{i}[\mathbf{m}_{0}, w_{i}(\mathbf{x})\underline{\mathbf{s}}_{j} - \underline{\mathbf{d}}_{i,j}]\mathbf{C}^{\mathrm{H}}\mathbf{x}\|_{2}^{2} \\ \text{subject to } \|\mathbf{x}\|_{1} \leq \tau_{l} \end{cases}$ start with x_{l-1} , solved in k_l iterations, in each iteration, compute $w_i(\mathbf{x}) = \frac{\sum_{j \in \Sigma} \langle \underline{\mathbf{d}}_{i,j} - \nabla \mathbf{F}[\mathbf{m}_0, -\underline{\mathbf{d}}_{i,j}] \mathbf{C}^* \mathbf{x}, \nabla \mathbf{F}[\mathbf{m}_0, \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} \rangle}{\sum_{j \in \Sigma} \langle \nabla \mathbf{F}[\mathbf{m}_0, \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x}, \nabla \mathbf{F}[\mathbf{m}_0, \underline{\mathbf{s}}_j] \mathbf{C}^* \mathbf{x} \rangle}$ $k \leftarrow k + k_l, l \leftarrow l + 1$ end while **Output:** Model perturbation estimate $\delta \mathbf{m} = \mathbf{C}^{H} \mathbf{x}$

$$l \leftarrow 0, \mathbf{x}_l \leftarrow \mathbf{0}, w_i = 1$$
 for all $i \in$

/warm

References

Aleksandr Y. Aravkin and Tristan van Leeuwen, "Estimating Nuisance Parameters in Inverse Problems", Inverse Problems, vol. 28, 2012.

Aravkin, A. Y., J. Burke, and M. Friedlander, 2013a, Variational properties of value functions: SIAM Journal on Optimization, 23, 1689–1717.

Aleksandr Y. Aravkin, Tristan van Leeuwen, and Ning Tu, "Sparse seismic imaging using variable projection", ICASSP, 2013b.

Aravkin, A. Y., T. van Leeuwen, H. Calandra, and F. J. Herrmann, 2012, Source estimation for frequencydomain FWI with robust penalties: Presented at the EAGE.

Felix J. Herrmann and Xiang Li, "Efficient least-squares imaging with sparsity promotion and compressive sensing", Geophysical Prospecting, vol. 60, p. 696-712, 2012.

Golub, G., and V. Pereyra, 1973, The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate: SIAM Journal on Numerical Analysis, 10, 413–432.

——–, 2003, Separable nonlinear least squares: the variable projection method and its applications: Inverse problems, 19, R1–R26.

References (cont.)

SIAM Journal on Scientific Computing, vol. 31, p. 890-912, 2008.

BIT Numerical Mathematics, 15, 49–57.

domain full-waveform inversion: Geophysics, 78, R249–R257.

Program Expanded Abstracts, 2012.

with multiples and source estimation", EAGE technical program Expanded Abstracts, 2013.

a physical scale model: Geophysics, 64, 888–901.

function: Geophysical Prospecting, 61, 874–881.

- Ewout van den Berg and Michael P. Friedlander, "Probing the Pareto frontier for basis pursuit solutions",
- Kaufman, L., 1975, A variable projection method for solving separable nonlinear least squares problems:
- Li, M., J. Rickett, and A. Abubakar, 2013, Application of the variable projection scheme for frequency-
- Ning Tu and Felix J. Herrmann, "Imaging with multiples accelerated by message passing", SEG Technical
- Ning Tu, Aleksandr Y. Aravkin, Tristan van Leeuwen, and Felix J. Herrmann, "Fast least-squares migration
- Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, part 1: Theory and verification in
- Rickett, J., 2013, The variable projection method for waveform inversion with an unknown source

