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Berkhout 1993; Guitton 2002; Muijs et al., 2007; Verschuur 2011; Long et al. 2013; Wong et al., 2014

Motivation

e make use of primaries and multiples simultaneously
» higher SNR from primaries and extra illumination from multiples




lllustration: primary wave propagation
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RTM image of primaries: using 1 source
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[Each receiver serves as a virtual secondary source]
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RTM image of multiples: using 1 source
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Muijs et al., 2007; Lin et al., 2010; Liu et al., 2011; Whitmore et al., 2010; Verschuur et al., 2011; Wong et al., 2012

Motivation

e eliminate acausal artifacts from multiples by inversion
» cross-correlation of wrong orders of up-/down-going wavefields
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Inversion of mulh!oles source, 60 iterations

[~120X the simulation cost of the 1 source RTM |mage]
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Herrmann and Li, 2012; Tu and Herrmann, 2012 a,b

Motivation

e look for a computationally efficient approach
» dense matrix products in multiple prediction by SRME or EPSI
» expensive simulation in iterative inversion




Caveat: internal multiples are not modelled in multiple prediction by the SRME relation

Solutions

e Model all orders of surface-related multiples using two-way
wave-equations based on the SRME relation

e Joint inversion of primaries and multiples given true source
wavelet

e Eliminate expensive dense matrix products in multiple
prediction

e Fast least-squares inversion with a cost of a single RTM of all
the data




Verschuur et al., 1992

Method: the SRME relation

P; = X;(S; + R/P;)

p :total up-going wavefield

X :surface-free dipole Green’s function
S :point-source wavefield = w;I

R :surface reflectivity ~ -1

¢ :frequencyindex 1---n;




Tu and Herrmann, 2012 a,b

Eliminating dense matrix-matrix products

[SRME relation & wave-equation solver]

Linearized modelling of the surface-free Green’s function:

Xi ~ V.FZ [m(), 6m, I
= w’D, H;[mo] ™ "H;[me] ™ diag(dm)D;I
= V.Fimg, om|(D¢I)

V F;: linearized modelling D, : data restriction at receivers
my : background model H, : time-harmonic Helmholtz operator
om : model perturbations D? :source injection operator

I :impulsive source array

eeeeeeeeeeeeeeeeeeee



Tu and Herrmann, 2012 a,b

Eliminating dense matrix-matrix products

[SRME relation & wave-equation solver]

Combined with free-surface physics:
— VFi[mg, sm](D*T)(S; — P;) — Dense matrix products

= VFiimy,om|(D(S; — P;)) —— Wave-equation solves with
= VF;[mg, S; — Py]. total downgoing data




Herrmann and Li, 2012; Tu and Herrmann, 2012 a,b

Compressive imaging with sparsity promotion

m = C™ argmin ||x/|;
: H 2 2
subject to Z HEZ — VF;m, S, —P,|Cx||; <o
1€
C :curvelet transform
* :wavefields with subsampled source experiments,
.e.,P, = P,E, p, = vec(P,).

() :randomized frequency subset
o : misfit tolerance




Tu and Herrmann, 2012 b; Tu et al., 2013 a

Rerandomization

SPGI1 solves a series of LASSO subproblems

argmmz |p, — VFilmy, S, —P.]C"x||3
1€§)2
subject to ||x|[1 < 7

for gradually relaxed 7's computed using Newton’s method.

Rerandomization:
» new independent sim. sources/freq. for each subproblem.
p faster progress to solution

» higher robustness to linearization errors




Synthetic example

e model cropped from the Sigsbee 2B model, 3.8km deep, 6km
wide, 7.62m grid spacing

e 15Hz Ricker wavelet, 8.184s recording time, 311 freq. samples

e 261 co-located sources/receivers, fixed spread, 22.86m spacing,
7.62m deep

e data modelled using iWave with free-surface BC.

e 31 (~10%) frequencies, 26 (~10%) simultaneous sources

e 50 iterations, simulation cost ~1 RTM with all the data

e comparison between RTM (adjoint migration) w. multiples and
fast inversion w. multiples
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Receiver
A shot-gather of total data 0 200




Receiver
A shot-gather of total data 0 200

primaries




Receiver
A shot-gather of total data 0 200

primaries

multiples




Cross-correlation imaging
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RTM image, with total downgoing data as areal source




Cross-correlation imaging
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Inversion
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Lateral distance (m)
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Fast inversion w. sparsity promofion, simulation cost ~1 RTM of all data
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Further questions

e Where are the remnant artifacts from?
» discrepancy between modelling and inversion engines

» inaccurate multiple prediction because of finite
aperture

e \What happens if there are errors in the background
velocity?

e \What can we do for an unknown source wavelet?
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Improve robusiness to velocity errors by curvelet-
domain sparsity-promoting
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Fast inversion without curvelet-domain sparsity promotion
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Fast inversion with curvelet-domain sparsity promotion




Unknown source wavelet

e on-the-fly source estimation by variable projection

e imaging of multiples alone

» caveat: separating primaries/multiples by for
example SRME also requires knowledge of the
source wavelet
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Fast inversion of multiples alone




Conclusions

Multiples can be useful signal in seismic imaging.
» increased illumination coverage
» cross-correlation (RTM) not enough to image multiples
» acausal artifacts can be suppressed by inversion

Primaries and multiples can be jointly imaged.
» based on the SRME relation
» in practice made possible by on-the-fly source estimation

Inversion can be carried out efficiently by
» eliminating dense matrix products in multiple prediction.
» reducing simulation cost using compressive imaging.




To be continued...

Application to 2D field data, Wed 11:55 AM

Imaging the Nelson data set using surface-related multiples




van der Neut and Herrmann, 2013

Future work

extension to general interferometric imaging
® in essence, the method combines

» multi-dimensional deconvolutions of wavefields
-in this case upgoing w.r.t. the downgoing
» linearized imaging procedure in an efficient way
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Input:
total upgoing wavefield P;, point-source wavefield S;,
background velocity model mg, tolerance o = 0, iteration limit £,,,44
Initialization:
k<0, 0,x;0
while £ < k,,,,, dO
()1, E; < new independent draw, P, = P,E;, S. = S,E;, p. = vec(P,)

~ r, el }

7; <— determine from 7;_1 and o by root finding on the Pareto curve

- . — VF;[m,,S. — P.|C"x||3 .
X] argI.nlnX 2ieny HE@ mo, 8; — Pyl Chx|l; //warm start with
subject to ||x||1 < 7

X;_1, solved In k; 1terations
k< k+k,l<+—[+1
end while
Output: Model perturbation estimate ém = CHx
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