Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

### Single- and multi-parameter WRI — synthetic examples Bas Peters & Felix J. Herrmann



Tuesday, December 9, 14



## Part 1 - single-parameter WRI









## Example – BG Compass model

- 103 sources/receivers w/ 55m sample interval
- Inaccurate initial model

 Low frequencies missing, 24 frequency batches (15 iterations each) {567},...,{2829} Hertz. Each interval contains 5 frequencies.



### True & initial model

#### True model



x [m]

Initial model

![](_page_4_Figure_5.jpeg)

![](_page_4_Picture_7.jpeg)

![](_page_5_Figure_0.jpeg)

x [m]

Result WRI,  $\lambda = 1$ 

![](_page_5_Figure_3.jpeg)

![](_page_5_Figure_5.jpeg)

![](_page_5_Picture_6.jpeg)

### Model estimate at every iteration

![](_page_6_Figure_1.jpeg)

![](_page_6_Picture_3.jpeg)

### Model estimate at every iteration

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_3.jpeg)

![](_page_8_Figure_0.jpeg)

#### First update WRI, $\lambda = 1$

![](_page_8_Figure_2.jpeg)

![](_page_8_Picture_6.jpeg)

### **Cross sections**

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_4.jpeg)

### Relative model errors

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_3.jpeg)

### **Objective function value**

![](_page_11_Figure_1.jpeg)

#### Objective WRI, cycle 2

![](_page_11_Figure_4.jpeg)

![](_page_11_Picture_5.jpeg)

### Data fit

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_7.jpeg)

## Predicted fields in initial model, 5Hz

- WRI does not work with physical wavefields
- WRI uses the 'data-augmented' wavefield
- for  $\lambda$  small enough, the initial field will match the data closely.

![](_page_13_Figure_4.jpeg)

![](_page_13_Figure_5.jpeg)

$$\bar{\mathbf{u}}_{kl} = \arg\min_{\mathbf{u}_{kl}} \left\| \begin{pmatrix} \lambda H_k(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u}_{kl} - \begin{pmatrix} \lambda \mathbf{q}_{kl} \\ \mathbf{d}_{kl} \end{pmatrix} \right\|_2$$

Data from data-augmented wave eqution in start model

![](_page_13_Picture_9.jpeg)

# Example – BG Compass model no inverse crime

- Generate 'observed' data using a compressibility and buoyancy model.
- Invert for compressibility, fixed and inaccurate buoyancy.
- Obtain velocity model from inverted compressibility and fixed inaccurate buoyancy.
- Low frequencies missing, 15 frequency batches (15 iterations each) {5 6}, {6 7},..., {19 20} Hertz. Each interval contains 5 frequencies.

![](_page_14_Picture_6.jpeg)

## Fields in initial model, 5Hz

- Wavefield in true model (blue).
- Wavefield in true compressibility model<sub>10</sub> with fixed and inaccurate buoyancy 5 model (red). 0
- Perfect model estimation still results in nonzero data fit.

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_16_Picture_0.jpeg)

#### True velocity model

![](_page_16_Figure_2.jpeg)

![](_page_16_Picture_6.jpeg)

### Initial velocity

#### Initial velocity model

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_5.jpeg)

## Buoyancy for modeling 'observed data'

#### Buoyancy model for modeling

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_4.jpeg)

## Fixed buoyancy for inversion

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

## Final velocity estimate using WRI

Result velocity WRI (derived),  $\lambda$ =100

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_7.jpeg)

![](_page_21_Picture_0.jpeg)

#### True velocity model

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_6.jpeg)

### Initial velocity

#### Initial velocity model

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

#### Result velocity WRI (derived), $\lambda$ =1000000000

![](_page_25_Figure_1.jpeg)

 $\lambda$  large -> does not fit data at the start 1st cycle through data

![](_page_25_Picture_4.jpeg)

#### Result velocity WRI (derived), $\lambda$ =1000000000

![](_page_26_Figure_1.jpeg)

 $\lambda$  large -> does not fit data at the start 2nd cycle through data

![](_page_26_Picture_6.jpeg)

## Final velocity estimate using WRI

Result velocity WRI (derived),  $\lambda$ =100

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_7.jpeg)

![](_page_28_Picture_0.jpeg)

#### True velocity model

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_6.jpeg)

### Initial velocity

#### Initial velocity model

![](_page_29_Figure_2.jpeg)

![](_page_29_Picture_5.jpeg)

### 1st update

#### Result velocity WRI (derived), $\lambda$ =1000000000

![](_page_30_Figure_2.jpeg)

### $\lambda$ large -> does not fit data at the start

![](_page_30_Picture_5.jpeg)

![](_page_31_Figure_0.jpeg)

### $\lambda$ small -> does not fit data at the start

![](_page_31_Picture_4.jpeg)

### **Conclusions - single-parameter WRI**

WRI can outperform FWI when starting models are inaccurate. WRI still works when mildly wrong physics is use—i.e., no inverse crime.

Fitting data at the start seems key.

![](_page_32_Picture_4.jpeg)

### Software

### Single parameter WRI and the first example are in the SLIM software release.

![](_page_33_Picture_5.jpeg)

### Part 2 - Multi-parameter WRI

![](_page_34_Picture_2.jpeg)

### Main issues with multi-parameter inverse problems: • non uniqueness

• parameter scaling

![](_page_35_Picture_5.jpeg)

Cross-well toy example Update parameters simultaneously using a quasi-Newton method.

![](_page_36_Picture_3.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_37_Picture_3.jpeg)

### Data fit > 99%

Proposed solutions include:

- find 'best' parameterization
- sequential/alternating inversion
- regularization
- manual scaling of gradients

### **Problems:**

- sensitive to parameter choices
- manual fine-tuning

![](_page_38_Picture_14.jpeg)

### **Observation:**

 Hessians naturally provide information on 'scaling' and 'coupling'.

Using Hessians was also proposed by Lavoué et al. 2014.

Adjoint-state based FWI leads to dense Hessians. **Problems:** 

- cannot store dense Hessian • matrix-vector product cost extra PDE solves

![](_page_39_Picture_10.jpeg)

### Goals

### multi-parameter WRI

### • Obtain an approximation of the Hessian without solving extra PDE's. • Approximation must be sparse and available in memory explicitly.

![](_page_40_Picture_6.jpeg)

### Goals

### multi-parameter WRI

- Approximation must be sparse and available in memory explicitly.

## This is possible w/ WRI!

# Obtain an approximation of the Hessian without solving extra PDE's.

![](_page_41_Picture_7.jpeg)

### Multi-parameter WRI example

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

true anisotropy 1.25 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.05 1.00 0 500 100

![](_page_42_Picture_5.jpeg)

### A reduced-space algorithm

![](_page_43_Figure_1.jpeg)

Tuesday, December 9, 14

$$\tilde{H} = \begin{pmatrix} \nabla_{\kappa,\kappa}^2 \phi_\lambda & 0\\ 0 & \nabla_{\mathbf{b},\mathbf{b}}^2 \phi_\lambda \end{pmatrix} = \begin{pmatrix} G_{\kappa}^* G_{\kappa} & 0\\ 0 & G_{\mathbf{b}}^* G_{\mathbf{b}} \end{pmatrix}$$

Approximate reduced Hessian sparsity pattern

Derivation similar to single parameter WRI Hessian approximation

![](_page_43_Picture_6.jpeg)

### A reduced-space algorithm

### Algorithm 1 Waveform inversion with a sparse Hessian approximation.

### while Not converged do 1. $\bar{\mathbf{u}} = \operatorname{arg\,min}_{\mathbf{u}} \left\| \begin{pmatrix} \lambda \mathbf{A}(\mathbf{b}, \kappa) \\ \mathbf{P} \end{pmatrix} \right\|$ 2. $\mathbf{G}_{\kappa}, \mathbf{G}_{\mathbf{b}}, \nabla_{\mathbf{b}} \bar{\phi}_{\lambda}, \nabla_{\kappa} \bar{\phi}_{\lambda}$ // Form 3. $\mathbf{p}_{gn} = \tilde{\mathbf{H}}^{-1} \mathbf{g} // \text{Solve}$ find steplength $\alpha$ // Linesearch 4. $\mathbf{m} = \mathbf{m} + lpha \mathbf{p}_{gn}$ // update model 5. end

$$\mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix} \Big\|_2$$
 // Solve

![](_page_44_Picture_6.jpeg)

### A reduced-space algorithm – example

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_46_Figure_0.jpeg)

### Summary & Conclusions - multi-parameter

- sparse
- easy to invert
- scales different parameter classes based on the optimization, data and PDE itself

Can extend to more than two parameters.

Different optimization strategies may not remove non uniqueness.

No theoretical guarantees yet.

WRI provides access to a reduced Hessian approximation which is:

![](_page_47_Picture_12.jpeg)

### Current & future work

Apply single- and multi-parameter WRI to real data. (talk on Wednesday)

3D WRI using iterative solvers (another talk on Wednesday)

![](_page_48_Picture_4.jpeg)

### References

Peters, Bas, and Felix J. Herrmann. 2014. "A Sparse Reduced Hessian Approximation for Multi-Parameter Wavefield Reconstruction Inversion." EAGE 2014.

R.E. Kleinman and P.M.van den Berg . 1992. A modified gradient method for two-dimensional problems in tomography. Journal of Computational and Applied Mathematics.

Biswanath Banerjee and Timothy F. Walsh and Wilkins Aquino and Marc Bonnet. 2013. Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional. Computer Methods in Applied Mechanics and Engineering.

Leeuwen, Tristan van, and Felix J. Herrmann. 2013. "Mitigating Local Minima in Full-Waveform Inversion by Expanding the Search Space." Geophysical Journal International .

Leeuwen, Tristan van, and Felix J. Herrmann. 2013. "A Penalty Method for PDE-Constrained Optimization." UBC.

Bas Peters, Felix J. Herrmann, and Tristan van Leeuwen. 2014. "Wave-equation based inversion with the penalty method: adjoint-state versus wavefield-reconstruction inversion". EAGE.

![](_page_49_Picture_8.jpeg)