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Waveform inversion

Works	  well	  if	  initial	  model	  is	  good
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Waveform inversion – poor start model
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Example	  from	  	  [Peters	  et	  al.	  2013]
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Wavefield reconstruction inversion

Less	  sensitive	  to	  
• starting	  models	  compared	  to	  FWI
• 	  missing	  low-‐frequency	  data

Avoids	  cycle-‐skipping	  problems	  by	  virtue	  of	  extending	  the	  search	  
space.
But,	  requires	  reasonable	  accurate	  solve	  of	  the	  augmented	  wave	  
equation...	  

[T.	  van	  Leeuwen	  &	  F.J.	  Herrmann,	  2013]
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Wavefield reconstruction inversion

Still	  limitations	  on	  quality	  of	  start	  models	  &	  missing	  low-‐frequencies
Can	  we	  do	  better?
Maybe	  full-‐space	  methods?

• at	  the	  “expense”	  of	  storing	  2	  copies	  of	  monochromatic	  wavefields

But,	  at	  the	  gain	  of	  	  no	  longer	  insisting	  on	  accurate	  solves...
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Toy problem

• cross-‐well	  setting
• 4	  frequencies	  [6-‐10]	  Hz
• 5	  simultaneous	  sources
• 5	  receivers
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Toy problem
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Toy problem
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Toy problem
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Toy problem
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Toy problem

model	  errors,	  
direct	  solver
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Toy problem

model	  errors,	  
accurate	  iterative	  solutions
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Toy problem
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Toy problem

Inexact	  iterative	  linear	  system	  solves:
• full-‐space	  method	  not	  very	  sensitive
• WRI	  &	  FWI	  quite	  sensitive
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Full-space vs reduced-space methods

Bottom	  line

reduced-‐space:	  	  	  	  	  	  solve	  for	  the	  fields
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  update	  the	  medium	  parameters

full-‐space:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  update	  fields	  &	  medium	  parameters
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Full-space vs reduced-space methods

Bottom	  line
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alternating	  strategy
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Full-space vs reduced-space methods

Bottom	  line
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alternating	  strategy

joint	  updating
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Full-space vs reduced-space methods

FWI	  &	  WRI	  are	  in	  the	  reduced-‐space	  class	  –i.e.,	  wave-‐equations	  
are	  solved
Full-‐space	  is	  commonly	  used	  in	  a	  Lagrangian	  setting.
Because	  of	  memory	  requirements,	  rarely	  used	  in	  (academic)	  
geophysics. [EM:	  E.	  Haber	  et	  al.,	  2004	  ;	  Seismic:	  M.	  J.	  Grothe	  et	  al.,	  2011]
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Problem	  formulation:

min
m,u

1

2
kPu� dk22 s.t. H(m)u = q

Short derivation

19
Tuesday, December 9, 14



�(m,u,�) =
1

2
kPu� dk22 +

�2

2
kH(m)u� qk22

Short derivation
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Quadratic	  penalty	  form	  (WRI):
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Newton’s	  method

Short derivation

gradient

updates	  for	  medium	  parameters
updates	  for	  all	  fields

Hessian
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Newton’s	  method:

Short derivation

X
X
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Approximate	  Hessian:

Short derivation
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Short derivation

Can	  be	  solved	  inexactly	  (cheap)!

Approximate	  Hessian:
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Notes on full-space quadratic-penalty methods for
PDE-constrained optimization
Bas Peters
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

Abstract

…

Introduction

We investigate different ways to successfully estimate multiple parameters from PDE’s, with focus on the mul‐
ti-parameter Helmholtz equation. The first order coupled system of equations describing acoustic wave mo‐
tion is

The pressure field is indicated by , the vector force source term is , where  indicates the component.  is
the particle velocity and  the scalar volume injection source term.The unknown parameters are the scalar
buoyancy  and the scalar compressibility . These are the parameters we want to estimate. In an acoustic
medium, the compressibility, buoyancy and velocity ( ) are related as .

Throughout this paper, we will use the discretize-then-optimize formalism. This means equation  is the only
continuous equation. After discretization of , we restrict ourselves to the case where there are only volume
injection sources, , and rewrite the discrete version of equation  as a second order partial differential
equation (PDE). The only fied in this equation is the pressure field. This is the Helmholtz equation in a lossless
and isotropic medium.

To obtain estimates for the unknown parameters, we would like to match experimentally observed data  to
predicted data  while the predicted field  satisfies the PDE.  is a linear operator which projects the pre‐
dicted field to the receiver locations. This problem is of the general PDE-constrained optimization type

 is a linear projection operator onto the receiver locations,  is the discretized two-paramter Helmholtz ma‐
trix,  is the pressure wavefield,  is the source term and  is the measured data. The two parameters to be
estimated are the buoyancy  and the compressibility .

This paper is concerned with solution methods for problem , specifically suitable for the situation where we
want to estimate multiple parameters occuring in the same PDE. We explore methods based on a quadratic
penalty formulation of a constrained optimization problem. Most reseach for solving problem  uses a La‐
grangian formulation. We will show that the penalty formulation has some interesting advantages and disad‐
vantages compared to the Lagrangian formulation and we will derive some algorithms which exploit the ad‐
vantages of a penalty formulation, but do not suffer too much from the disadvantages. We will not discuss de‐
tails of memory consumtion and computational requirements of the proposed algorithms, compared to La‐
grangian based methods. We do however, show that the proposed algorithms are in the same ballpark as their
lagrangian counterparts, memory and compuation wise.

Memory and computational cost will be evaluated from the direct solver point of view, QR and Cholseky fac‐
torizations will be used to solve the linear systems occuring in this paper. This does not imply we favor direct
methods over iterative solvers, but this will change the entire point of view on what is computationally effi‐
cient and what is not. The fastest algorithms for PDE-constrained optimization may very well be a combina‐
tion of direct and iterative solvers. Some remarks are made about challenges for iterative solvers and places
where iterative solvers could be very efficient, compared to direct solvers.

Context, motivation and challenges

In parameter estimation problems, we almost exclusively work with multi-experiment data. In the frequency
domain which we consider in this work, the multiple experiments originate from the source(s) which excite
the fields from multiple locations which they do so at multiple frequencies. The multiple frequencies may be
due to exciting the fields multiple times, each time at a different frequency or by Fourier transforming a time-
domain signal. In the multi experiment setting, the matrices and vectors in problem  obtain a block struc‐
ture.

where the subscript indicates the experiment index.
Solving problem  using the PDE in equation  is difficult for a number of reasons. Besides the usual numeri‐
cal challenges of solving large linear and possibily ill-conditioned systems, limited availability of data and the
ill-posedness of the inverse problem, there is the difficulty of having two parameters to be estimated, occuring
in either a coupled first-order PDE system or a second-order PDE. Intuitively, this will introduce a certain
‘trade-off’ between (in this case) compressibility and buoyancy in the parameter estimation sense. This could
also be described as non-uniqueness/uncertainty of the estimation process. This is a particulary problematic
issue in this case. We can verify this with a simple example.

Example 1:

We generate ‘observed’ data in a model with a buoyancy and compressibility pertubation from the homoge‐
neous background model, which serves as the initial guess. We invert this data using the most commonly used
approch in geophysical exploration: eliminating the constraints in  and solving the unconstrained problem
by using just the reduced gradient to minimize the objective with the L-BFGS algorithm. (insert citations).
(Gradient-descent type algorithms are also widely used in exploration geophysics). The results show that we
managed to fit over 95% of the data, but the estimated parameters are obviously nowhere near the true model.
Moreover, only the compressibility is changed compared to the initial guess, the buoyance is almost un‐
touched. This example shows that inverting (effectively) for only one of the two parameters, we are able to fit
over 95% of the data anyway. This is very different in the single-parameter estimation problem. To show this,
we repeat the previous exercise, but this time we generate data using only a pertubation in the compressibility
and we only invert for the compressibility. Again, we are able to fit over 95% of the data, but this time the esti‐
mated model is very close to the true model.

Example 1 explicitly shows that using just the gradient in a quasi-Newton scheme is not up to the task of esti‐
mating the parameters. We observe that the norm of the gradients of the objective value, corresponding to the
different paramters, are very different. This causes only one of the two parameters to be updated. One could
simply scale the gradients by modifying the quasi-Newton or gradient-descent algorithm, but the question is:
how to scale these two? Putting them on equal footing may sound reasonable, but this is still a completely ar‐
bitrary and unjustified choice. Scalings of this type, but inspired by the physics of wavefields are used in (cite).
This type of approach may work well, but it requires problem dependent specification of the scaling. Another
approach to mitigate the challenges of multi-parameter estimation is to use an hirarchical strategy: Estimate
one parameter while keeping the other fixed and do this in an alternating fashion, possibly just once. This
stragety is used in (cite tarantola). This can also yield satisfactory results, but it requires a lot of parameter
tweeking and fine-tuning, to be repeated for every new problem. This strategy requires choosing which para‐
meter to start with, for how many iterations or to which objective function value. Yet another way to mitigate
the non-uniqueness and different magnitudes of the gradients is the incorporation of a priori information into
the problem. (meju gallardo) use so called ‘cross-gradient’ regularization of the inverse problem. This requires
the different estimated parameters to exhibit ‘structural similarity’, ie, they have to vary in a similar fashion. A
priori information should be very usefull, but it has to be available first. This is often not the case, because we
need a priori information about the relation between compressibility and buoyancy, not about each parame‐
ter separately (although this can be included as well). In the case of acoustic inverse problems with the earth
as the medium, we actually know that the buoyancy and compressibility may sometimes vary in a similar way,
but sometimes their relation can be completely different. (example bg model). There is also some litterature
available concerned with which parameterization to choose in multi-parameter seismic problems (cite).
These works analyse gradient direction of the reduced Lagrangian objective or partial derivatives of the PDE (

). Based on those pieces of information, it is decided which parametrization (density-velocity, compressibili‐
ty-density, etc.) should give the best parameter estimations. This is also purely focued on gradient-descent or
quasi-Newton methods, just like the other approaches described above. This totally bypasses physical infor‐
mation which is available in the Hessian. See (pratt for a physical interpretation of the Hessian in the reduced
Lagrangian). From an optimization point of view, it is well known that Newton’s method has the affine trans‐
formation invariance property (refs) and is in principle robust to ill-conditioned problems. Quasi-Newton and
gradient-descent do not have these properties.

Our approach is therefore to use the Hessian and approximations of the Hessian to estimate multiple parame‐
ters. We will evaluate if the use of the Hessian allows simultaneous estimation of multiple parameters, without
using prior information about the coupling of the parameters in the medium to be estimated, without hirar‐
chical strategies and without manually rescaling the different parts of the gradient of the objective. We will
thus focus on Newton and Gauss-Newton type algorithms.

Penalty methods for PDE-constrained optimization

A penalty formulation for solving problem  was presented in Leeuwen and Herrmann (2013b) and used for
single parameter seismic waveform inversion in Leeuwen and Herrmann (2013a). Earlier, a penalty formula‐
tion with a fixed rule for balancing the two terms was used in (cite modified gradient and contrast source). We
use the same formulation, but now for two unknown parameters

Problem  is a combination of data-misfit and PDE-misfit, where the scalar  balances the two. It is important
to note that the balancing between the two terms is the essence of a penalty method. Unlike a Lagrangian for‐
mulation of a equality constrained problem, the penalty formulation for a fixed  treats the original objective
to be minimized as well as the constraints in the same way. In other words, there is no longer a notion of what
are constraints and what should be minimized. The value of  determines what will happen. A large  will
provide results approaching the solutions to problem , while very small values for  will provide solutions to
a problem similar to , but with objective and constraints switched. Of course, the standard algorithms for
quadratic penalty methods honour the notion of minimization objective and constraints by solving a se‐
quence of problem of the form of  where each problem is solved with a different value for . This guarantees
convergence to a solution of , see theorem 17.1 in Nocedal and Wright (2000). In this paper we only consider
a single value for , so we do not solve a sequence of problems and see how well it works. The main reasons
for this approach are promising results in (cite our papers and abstracts) using a single value for  as well as
the cost of solving PDE-constrained optimization problems. For large scale problems, solving it once is al‐
ready computationally expensive, solving a sequence of problems would seriously decrease the competitive‐
ness of penalty based methods.

We can introduce the objective function for problem  as

which is an unconstrained minimization problem. We can also write this objective in it’s separable form as

where  is the index for the experiment number. This explicitly shows we can accumulate the objective in par‐
allel as a running sum. This is not the case for the gradient and Hessian in general. Another way to rewrite this
objective is in a block form, organized per angular frequency 

where , blbalalkdsf. This structure is intuitive in case direct factorization

methods are used for the solution of linear systems arising in the optimization algorithms, because it groups
all blocks in terms of the PDE discretization matrices per frequency. This form is also convenient in the simul‐
taneous source scenario, also known as randomized trace estimation (cite eldad,felix).

The first-order necessary condition for a local minimizer of this unconstrained problem are

where the partial derivative matrices are given by

which have the following multi experiment block-structure:

and the second-order necessary conditions are (in addition to satisfying the first-order conditions)

Whearas we will use the first-order necessary conditions to design our optimization algorithms, the second-
order necessary condition is used as a diagnostic.

With these standard optimality conditions defined, we can formulate several algorithms to minimize objec‐
tive . Each of which has different computational challenges, memory requirements, advantages and disad‐
vantages.

First, we return to the case of a  sufficiently small, such that the is enough emphasis on the 
term to fit the observed data  to appoximately, we essentially obtain an approximation to the problem  with
the objective and constraints switched

For now we assume that the observed data is noise free, so fitting it exactly is no concern. In the realistic case
with noise, the constraint should be relaxed to inexact data fitting. The motivation to bring this interpretation
of the quadratic penalty method for PDE-constrained optimization with a small , is to explain why we still
use the quadratic penalty form, rather than solve problem , or related problem with inexact data fit con‐
straints using a Lagrangian form. This Lagrangian form is

with  as the vector of Lagrangian multipliers for the equality constraints. There are no obstacles which keep
us from solving this constrained problem, but this form does pose some limitations on the algorithms that can
be developed.

The first order necessary conditions for a minimum of the Lagrangian in  are

Variant 1: Full Newton

This variant is the classical Newton method to minimize . At each iteration we compute :

In more explicit form this iteration can be written as

This method can be seen as the quadratic penalty objective equivalent of the Lagrangian ‘all-at-once’ method
(cite), because this method updates both the medium parameters (compressibility and buoyancy) and the
fields. This can be an advantage, because the problem has a lot of parameters to work with, minimizing the
objective. Other main advantages are the availability of an exact gradient vector  and exact Hessian matrix 
for free. No computations (PDE-solves) are required, contrary to reduced space methods as described below
and in (cite ghattas, haber, leeuwen). This immediately points at the disadvantages as well; to be able to up‐
date the fields, they have to be stored in memory. The feasibility of this is highly dependend on the number of
grid points and the number of experiments. Even for modest sized problems with a relatively small number of
experiments, the Hessian will most likely be too large for direct factorization to compute the Newton step. Di‐
rect factorization is used by Grote et al. (2011) to solve interior-point systems in originating from a Lagrangian
approch to handle the constraints. Iterative methods need to be used when the required hardware is not avail‐
able for direct factorization. This has been the topic of many papers (cite) related to precondioning and solv‐
ing the Newton system for the Lagrangian formulation (the KKT-system). In this case, we are not aware of re‐
search dedicated to solve systems arising from the penalty form of the PDE-constrained optimization prob‐
lem. Although some blocks of our Newton system are the same as in the KKT system for the Lagrangian form
(see Haber), a main difference is the  block. This block is the combination of the normal equations form
of a PDE system matrix and the linear operator selecting the receiver locations. This has a particularly unfa‐
vorable eigenvalue distribution and a roughly squared condition number. No litterature has been published
dedicated to solving this block on its own using iterative methods. In this work we will therefore not consider
iterative solutions of the full Newton method, only direct factorizations on small problems. When efficient it‐
erative preconditioning and solutions methods are available, this Newton method can enjoy inexact solves of
the Newton system to save a significant number of iterations. See (Nocedal and Wright, 2000) for some theo‐
rems about the required tolerance at every iteration to preserve a desired rate of convergence of the Newton
method.

The Newton iteration uses the solution of  as the update for fields and parameters. To ensure global conver‐
gence, this update can be used in a trus-region or line-search algorithm. Only line-search algorithms are con‐
sidered in this work, without specifying the details or advocating the use of a line-search over a trust-region
approach.

Variant 2: Uncoupling fields and medium parameters in Newton’s method

This method gives up the rate of convergence of Newton’s method, as well as possiblily some robustness with
regard to local minima. This last statment is very difficult to quantify in the non-convex setting of PDE-con‐
straint optimization, especially when we are dealing with oscillatory fields. It requires numerical experiments
to test wheater this is true or not. Furthermore, theorems about the convergence rate of inexact Newton’s
method no longer hold.

Uncoupling the fields and medium parameters amounts to setting to zero, the Hessian blocks which couple
medium parameters to fields. This leads to the following Newton-type system which needs to be solved at
every iteration

This shows the benefits of this approximation of the Hessian. The update for the fields can now be computed
in parallel, each block in the block-diagonal  block can therefore be factored separately. This algorithm
allows the solution of the Newton system using direct solvers for problems a lot larger than variant 1. The ap‐
proximation to the Hessian in this variant does not approximate the relation between the medium parameters
directly, but only indirectly because the removal of the coupling between fields and medium parameter does
affect the Newton direction at every iterate. This Hessian approximation can be written a bit more explicitly as

The Hessian in equation  can be factored as

which reveals it is an Hermitian matrix, positive-semidefinite or positive-definite (depending on the rank of
the factor) with real eigenvalues. The discretization of the PDE will determine ,  and thus the (semi-)def‐
initeness of the Hessian approximation in this section. In case we use the discretization of (cite),  is full rank
and  is also full rank, with no linear dependence between the rows of  and . Because the update for the
fields  and the medium parameter updates ,  are uncoupled, we can solve every linear system in the 

 block in parallel. For the medium parameter updates we can either use a direct factorization or an iter‐
ative method. Which one will be most suitable depends on a number of things. First of all, the PDE itself, but
also the mesh-type (regular gird / grids with hard refinement etc), type of finite-differences/finite-elements
which are used determine the bandwidth, symmetry properties and eigenvalue distribution and the condition
number. Therefore it is not possible to make a general recomendation about the solution method for the
medium parameter updates.

Variant 3: Block-diagonal Hessian approximation Newton-type method.

In this variant we set all off-diagonal blocks of the Hessian corresponding to the full Newton step for objective 
 to zero. This gives the following Hessian approximation

In addition to the things we gave up to arrive at variant 2, we now also give up the coupling between the medi‐
um parameters. We only maintain the action of the Hessian blocks on each class of medium parameters sepa‐
rately. Note that this can be more than just scaling. The buoyancy for example, is inside the div-grad operator,
giving the corresponding Hessian block a differential operator structure. This can be seen in the section about
the heuristics on effets of the various Hessian approximations. The additional advantage compared to variant
2, is that even the updates for the medium parameters can be computed in parallel. This allows this variant to
be used for even larger problem when relying on direct factorizations to solve for the field and medium para‐
meter updates. By ignoring the blocks coupling the medium parameters, we reduce the bandwith of the sys‐
tem to be solved for the medium parameter updates. This cuts back on the memory requirements due to fill-
in during the factorization process.

Variant 4: Reduced-space sparse Hessian approximation

The main argument for this variant is it’s very limited memory use related to the storage of the fields corre‐
sponding to all the experiments. We will depart from the variants which store and update the fields, instead
we will solve for the fields at every iteration of a Newton-type algorithm. This was presented in Leeuwen and
Herrmann (2013b). The first step is to make sure our objective satisfies the first-order optimiality condition
with respect to the fields. To achieve this, we solve

which corresponds to the least-squares problem

In Leeuwen and Herrmann (2013b) it is also noted that this can be interpreted as a variational projection as in
Aravkin and Leeuwen (2012). This least-squares from explicitly shows that observed data information is aug‐
mented to the PDE. The solution will satisfy this observed data if the trade-off parameter  is chosen suffi‐
ciently small. We proceed by applying block-Gaussian elimination to the full Newton system . To make no‐
tation simple, partition the Hessian from equation  as

Eliminating the  block results in

which can be recognized as the Schur-complement. When we subsitute , the above simpli‐
fies to

These are the reduced-Hessian and reduced-gradient for the following reduced objective

where  is the solution to the least-squares problem . The value of the variable projection interpretation is
that this proves (insert theorem) that the stationary points of the reduced objective  are also stationary
points of the original full objective . This does not imply that the solutions generated by minimizing each of
the objectives will always be the same.

This reduced objective shows one of the main disadvantages of reduced-space methods: function evaluations
require the solution of least-squares problems. This is equivalent to the reduced-space objectives based on a
Lagrangian, which require PDE-solves for function evaluations (Haber et al., 2000). This is a problem in line-
search or trust-region algorithms. To keep the computational cost under control in a backtracking line-search
algorithm, it is common to limit the number of back-track steps and to reduce the step size considerably to
make sure a step is found quickly. This may cause the algorithm to achieve a sub-optimal rate of convergence.
In variants 1, 2 and 3 this is not a problem, because function evaluations are cheap; it merely takes some ma‐
trix-vector products. These variants should be able to find the near optimal step-length at every iteration of
the Newton-type algorithm. A second major disadvantage of reduced-space methods is that the block-elimi‐
nation turned the large and sparse full Hessian into a dense and small reduced Hessian. In certain optimiza‐
tion problem this may be a favourable trade-in, but in the PDE-constrained optimization setting, especially
when dealing with wave-phenomena, the ‘small’ dense Hessian becomes to large to store in memory. for the
reduced Hessian based on a Lagrangian objective.

One way to proceed, is to compute matrix-free matrix-vector products with dense Hessian  by
solving the linear system with the  block at every iteration of an iterative algorithm to compute the New‐
ton-type step. The linear systems in the  block can be solved using a direct factorization method, but the
computation of the Newton-type step is restricted to iterative methods. Therefore this method is only a feasi‐
ble option, if the Hessian is sufficiently well conditioned or has some usefull eigenvalue clustering. This is un‐
fortunately not the case here, therefore an efficient preconditioner is required, but unavailable at this time.
This is a significant disadvantage of the used formulation of the PDE-constrained problem using the quadratic
penalty function. It must be noted however, that in the Lagrangian case where the reduced Hessian (see Haber
et al., 2000 for the reduced Hessian based on a Lagrangian objective) is used (Haber et al. (2000),Métivier et al.
(2013),ghattas), the extra effort compared to quasi-Newton methods does not always pay off in the single-pa‐
rameter waveform-inversion problem (Métivier et al., 2013). (ghattas) describes this method in the multi-pa‐
rameter waveform inversion context, but does not show an example. It remains to be investigated how this
method will perform in the multi-parameter case. The reduced Hessian in the Lagrangian setting differs from
the one in the quadratic penalty setting in the sense that the Lagrangian based reduced Hessian requires a se‐
ries of two linear-system solves to compute a matrix-free Hessian-vector product, whereas the penalty-based
reduced Hessian requires only one. The problem of solving a series of linear-systems is less suitable for inex‐
act iterative methods, because the error from solving the first linear system is effectiveley multiplied by the
approximate inverse of the second linear system. We will not investigate the use of the reduced Hessian in this
work.

The strucure of the reduced Hessian in equation  allows an interesting alternative which still allows us to
use the reduced-Hessian. (Leeuwen and Herrmann, 2013b) proposes to use just the sparse part, . The accu‐
racy of this approximation depends on the value of , a smaller value increases the accuracy. It must be noted
that we are not primarily intested in how well  approximates , but in how well the computed
update direction using  approximates the direction which would follow when  was used as the
Hessian. Taking the sparse part from the Hessian in equation  leads to

In the single parameter estimation problem, the use of this approximation has shown to be approximately as
powerfull as the L-BFGS quasi-Newton method. Here we are primarily interested in the question if the approx‐
imate Hessian properly balances the updates for the multiple parameters, rather then rate of convergence. We
will rely on numerical experiments to show this.

Variant 5: Reduced-space sparse block-diagonal Hessian approximation

A further simplification of variant 4 is to approximate the Hessian approximation even further by dropping the
off diagonal blocks of . This uncouples the updates for the different parameter types, but does allow the up‐
dates to be computed in parallel. As in variant 3, this allows larger problems to be solved using a direct factor‐
ization method.

Memory requirements

One of the main drawbacks of algorithms which update the fields, rather than solving for them, is that all
fields need to be in memory, compared to 1 or 2 fields for the other class of algorithms. In present day parallel
computing environments, things have changed a bit. When we solve for the fields, the objective function and
its gradient can be computed in a running sum over the multiple experiments. That is why the memory re‐
quirements are so low. It is very common however, to parallize over frequencies. That is, split the separable
objective function over the multiple frequencies and compute one frequency per core/node. This is a form of
trivial parallel computing with maximum efficiency. Memory wise, the total storage of fields has increased cor‐
respondingly. This is equivalent to the algorithm of variant 2, where the objective is not intrinsically separable,
but by uncoupling the fields from medium parameters, we can achieve the same parallelism as in the variants
where we solve for the fields. Concluding, variant 2 is an algorithm which updates the fields, but is memory
wise similar to algorithms which solve for the fields. Note that this is not possible in the full Newton methods
(variant 1), because computing updates for the fields in a parallel fashion would require comminucation be‐
tween the solution processes for the medium parameter updates and field updates.

Known deficiencies of quadratic penalty methods in the PDE-constrained optimization setting

boundedness from below: In general, the objective of a quadratic penalty formulation of an equality con‐
strained problem may not be bounded from below (Nocedal and Wright, 2000). In our case the objective is the
sum of two norms, therefore the objective function value will be bounded from below by .
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Algorithm 1 Full-Newton for Quadratic Penalty form.

   while Not converged do
  1.    form Hessian and gradient     // Form (~free)
  2.     Solve for Newton direction   // Solve
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  0. construct initial guess  for medium and  for each field
   while not converged do
  1.    form Hessian and gradient                    // form (~free)
  2.    ignore the  blocks      // approximate
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Algorithm 3 Block-diagonal approximation of the Hessian for the Quadratic Penalty form.

   while Not converged do
  1.    form Hessian and gradient     // Form (~free)
  2.    ignore the  blocks     // Approximate
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u

∥
∥∥

λA(m)
P

λq
d

∥
∥∥2

(18)

λ

14
14

= ( ).

⎛
⎝
⎜⎜⎜

ϕ∇2
u,u

ϕ∇2
κ,u

ϕ∇2
b,u

\vline

\vline

\vline

ϕ∇2
u,κ

ϕ∇2
κ,κ

ϕ∇2
b,κ

ϕ∇2
u,b

ϕ∇2
κ,b

ϕ∇2
b,b

⎞
⎠
⎟⎟⎟ E

C
B
D

(19)

ϕ∇2
u,u

(D − C B)( ) = ( ) − C ϕ( , κ, b)E−1 δκ

δu

ϕ∇κ

ϕ∇b
E−1∇u ū(20)
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ū ∥2

2(22)

ū 18
22

5

D − C BE−1

E−1

E−1

21
D

λ

D D − C BE−1

D D − C BE−1

21

D = ( ) = ( ).
ϕ∇2

κ,κ

ϕ∇2
b,κ

ϕ∇2
κ,b

ϕ∇2
b,b

G∗
κGκ

G∗
bGκ

G∗
κGb

G∗
bGb

(23)

D

0

Algorithm

26
Tuesday, December 9, 14



Notes on full-space quadratic-penalty methods for
PDE-constrained optimization
Bas Peters
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

Abstract

…

Introduction

We investigate different ways to successfully estimate multiple parameters from PDE’s, with focus on the mul‐
ti-parameter Helmholtz equation. The first order coupled system of equations describing acoustic wave mo‐
tion is

The pressure field is indicated by , the vector force source term is , where  indicates the component.  is
the particle velocity and  the scalar volume injection source term.The unknown parameters are the scalar
buoyancy  and the scalar compressibility . These are the parameters we want to estimate. In an acoustic
medium, the compressibility, buoyancy and velocity ( ) are related as .

Throughout this paper, we will use the discretize-then-optimize formalism. This means equation  is the only
continuous equation. After discretization of , we restrict ourselves to the case where there are only volume
injection sources, , and rewrite the discrete version of equation  as a second order partial differential
equation (PDE). The only fied in this equation is the pressure field. This is the Helmholtz equation in a lossless
and isotropic medium.

To obtain estimates for the unknown parameters, we would like to match experimentally observed data  to
predicted data  while the predicted field  satisfies the PDE.  is a linear operator which projects the pre‐
dicted field to the receiver locations. This problem is of the general PDE-constrained optimization type

 is a linear projection operator onto the receiver locations,  is the discretized two-paramter Helmholtz ma‐
trix,  is the pressure wavefield,  is the source term and  is the measured data. The two parameters to be
estimated are the buoyancy  and the compressibility .

This paper is concerned with solution methods for problem , specifically suitable for the situation where we
want to estimate multiple parameters occuring in the same PDE. We explore methods based on a quadratic
penalty formulation of a constrained optimization problem. Most reseach for solving problem  uses a La‐
grangian formulation. We will show that the penalty formulation has some interesting advantages and disad‐
vantages compared to the Lagrangian formulation and we will derive some algorithms which exploit the ad‐
vantages of a penalty formulation, but do not suffer too much from the disadvantages. We will not discuss de‐
tails of memory consumtion and computational requirements of the proposed algorithms, compared to La‐
grangian based methods. We do however, show that the proposed algorithms are in the same ballpark as their
lagrangian counterparts, memory and compuation wise.

Memory and computational cost will be evaluated from the direct solver point of view, QR and Cholseky fac‐
torizations will be used to solve the linear systems occuring in this paper. This does not imply we favor direct
methods over iterative solvers, but this will change the entire point of view on what is computationally effi‐
cient and what is not. The fastest algorithms for PDE-constrained optimization may very well be a combina‐
tion of direct and iterative solvers. Some remarks are made about challenges for iterative solvers and places
where iterative solvers could be very efficient, compared to direct solvers.

Context, motivation and challenges

In parameter estimation problems, we almost exclusively work with multi-experiment data. In the frequency
domain which we consider in this work, the multiple experiments originate from the source(s) which excite
the fields from multiple locations which they do so at multiple frequencies. The multiple frequencies may be
due to exciting the fields multiple times, each time at a different frequency or by Fourier transforming a time-
domain signal. In the multi experiment setting, the matrices and vectors in problem  obtain a block struc‐
ture.

where the subscript indicates the experiment index.
Solving problem  using the PDE in equation  is difficult for a number of reasons. Besides the usual numeri‐
cal challenges of solving large linear and possibily ill-conditioned systems, limited availability of data and the
ill-posedness of the inverse problem, there is the difficulty of having two parameters to be estimated, occuring
in either a coupled first-order PDE system or a second-order PDE. Intuitively, this will introduce a certain
‘trade-off’ between (in this case) compressibility and buoyancy in the parameter estimation sense. This could
also be described as non-uniqueness/uncertainty of the estimation process. This is a particulary problematic
issue in this case. We can verify this with a simple example.

Example 1:

We generate ‘observed’ data in a model with a buoyancy and compressibility pertubation from the homoge‐
neous background model, which serves as the initial guess. We invert this data using the most commonly used
approch in geophysical exploration: eliminating the constraints in  and solving the unconstrained problem
by using just the reduced gradient to minimize the objective with the L-BFGS algorithm. (insert citations).
(Gradient-descent type algorithms are also widely used in exploration geophysics). The results show that we
managed to fit over 95% of the data, but the estimated parameters are obviously nowhere near the true model.
Moreover, only the compressibility is changed compared to the initial guess, the buoyance is almost un‐
touched. This example shows that inverting (effectively) for only one of the two parameters, we are able to fit
over 95% of the data anyway. This is very different in the single-parameter estimation problem. To show this,
we repeat the previous exercise, but this time we generate data using only a pertubation in the compressibility
and we only invert for the compressibility. Again, we are able to fit over 95% of the data, but this time the esti‐
mated model is very close to the true model.

Example 1 explicitly shows that using just the gradient in a quasi-Newton scheme is not up to the task of esti‐
mating the parameters. We observe that the norm of the gradients of the objective value, corresponding to the
different paramters, are very different. This causes only one of the two parameters to be updated. One could
simply scale the gradients by modifying the quasi-Newton or gradient-descent algorithm, but the question is:
how to scale these two? Putting them on equal footing may sound reasonable, but this is still a completely ar‐
bitrary and unjustified choice. Scalings of this type, but inspired by the physics of wavefields are used in (cite).
This type of approach may work well, but it requires problem dependent specification of the scaling. Another
approach to mitigate the challenges of multi-parameter estimation is to use an hirarchical strategy: Estimate
one parameter while keeping the other fixed and do this in an alternating fashion, possibly just once. This
stragety is used in (cite tarantola). This can also yield satisfactory results, but it requires a lot of parameter
tweeking and fine-tuning, to be repeated for every new problem. This strategy requires choosing which para‐
meter to start with, for how many iterations or to which objective function value. Yet another way to mitigate
the non-uniqueness and different magnitudes of the gradients is the incorporation of a priori information into
the problem. (meju gallardo) use so called ‘cross-gradient’ regularization of the inverse problem. This requires
the different estimated parameters to exhibit ‘structural similarity’, ie, they have to vary in a similar fashion. A
priori information should be very usefull, but it has to be available first. This is often not the case, because we
need a priori information about the relation between compressibility and buoyancy, not about each parame‐
ter separately (although this can be included as well). In the case of acoustic inverse problems with the earth
as the medium, we actually know that the buoyancy and compressibility may sometimes vary in a similar way,
but sometimes their relation can be completely different. (example bg model). There is also some litterature
available concerned with which parameterization to choose in multi-parameter seismic problems (cite).
These works analyse gradient direction of the reduced Lagrangian objective or partial derivatives of the PDE (

). Based on those pieces of information, it is decided which parametrization (density-velocity, compressibili‐
ty-density, etc.) should give the best parameter estimations. This is also purely focued on gradient-descent or
quasi-Newton methods, just like the other approaches described above. This totally bypasses physical infor‐
mation which is available in the Hessian. See (pratt for a physical interpretation of the Hessian in the reduced
Lagrangian). From an optimization point of view, it is well known that Newton’s method has the affine trans‐
formation invariance property (refs) and is in principle robust to ill-conditioned problems. Quasi-Newton and
gradient-descent do not have these properties.

Our approach is therefore to use the Hessian and approximations of the Hessian to estimate multiple parame‐
ters. We will evaluate if the use of the Hessian allows simultaneous estimation of multiple parameters, without
using prior information about the coupling of the parameters in the medium to be estimated, without hirar‐
chical strategies and without manually rescaling the different parts of the gradient of the objective. We will
thus focus on Newton and Gauss-Newton type algorithms.

Penalty methods for PDE-constrained optimization

A penalty formulation for solving problem  was presented in Leeuwen and Herrmann (2013b) and used for
single parameter seismic waveform inversion in Leeuwen and Herrmann (2013a). Earlier, a penalty formula‐
tion with a fixed rule for balancing the two terms was used in (cite modified gradient and contrast source). We
use the same formulation, but now for two unknown parameters

Problem  is a combination of data-misfit and PDE-misfit, where the scalar  balances the two. It is important
to note that the balancing between the two terms is the essence of a penalty method. Unlike a Lagrangian for‐
mulation of a equality constrained problem, the penalty formulation for a fixed  treats the original objective
to be minimized as well as the constraints in the same way. In other words, there is no longer a notion of what
are constraints and what should be minimized. The value of  determines what will happen. A large  will
provide results approaching the solutions to problem , while very small values for  will provide solutions to
a problem similar to , but with objective and constraints switched. Of course, the standard algorithms for
quadratic penalty methods honour the notion of minimization objective and constraints by solving a se‐
quence of problem of the form of  where each problem is solved with a different value for . This guarantees
convergence to a solution of , see theorem 17.1 in Nocedal and Wright (2000). In this paper we only consider
a single value for , so we do not solve a sequence of problems and see how well it works. The main reasons
for this approach are promising results in (cite our papers and abstracts) using a single value for  as well as
the cost of solving PDE-constrained optimization problems. For large scale problems, solving it once is al‐
ready computationally expensive, solving a sequence of problems would seriously decrease the competitive‐
ness of penalty based methods.

We can introduce the objective function for problem  as

which is an unconstrained minimization problem. We can also write this objective in it’s separable form as

where  is the index for the experiment number. This explicitly shows we can accumulate the objective in par‐
allel as a running sum. This is not the case for the gradient and Hessian in general. Another way to rewrite this
objective is in a block form, organized per angular frequency 

where , blbalalkdsf. This structure is intuitive in case direct factorization

methods are used for the solution of linear systems arising in the optimization algorithms, because it groups
all blocks in terms of the PDE discretization matrices per frequency. This form is also convenient in the simul‐
taneous source scenario, also known as randomized trace estimation (cite eldad,felix).

The first-order necessary condition for a local minimizer of this unconstrained problem are

where the partial derivative matrices are given by

which have the following multi experiment block-structure:

and the second-order necessary conditions are (in addition to satisfying the first-order conditions)

Whearas we will use the first-order necessary conditions to design our optimization algorithms, the second-
order necessary condition is used as a diagnostic.

With these standard optimality conditions defined, we can formulate several algorithms to minimize objec‐
tive . Each of which has different computational challenges, memory requirements, advantages and disad‐
vantages.

First, we return to the case of a  sufficiently small, such that the is enough emphasis on the 
term to fit the observed data  to appoximately, we essentially obtain an approximation to the problem  with
the objective and constraints switched

For now we assume that the observed data is noise free, so fitting it exactly is no concern. In the realistic case
with noise, the constraint should be relaxed to inexact data fitting. The motivation to bring this interpretation
of the quadratic penalty method for PDE-constrained optimization with a small , is to explain why we still
use the quadratic penalty form, rather than solve problem , or related problem with inexact data fit con‐
straints using a Lagrangian form. This Lagrangian form is

with  as the vector of Lagrangian multipliers for the equality constraints. There are no obstacles which keep
us from solving this constrained problem, but this form does pose some limitations on the algorithms that can
be developed.

The first order necessary conditions for a minimum of the Lagrangian in  are

Variant 1: Full Newton

This variant is the classical Newton method to minimize . At each iteration we compute :

In more explicit form this iteration can be written as

This method can be seen as the quadratic penalty objective equivalent of the Lagrangian ‘all-at-once’ method
(cite), because this method updates both the medium parameters (compressibility and buoyancy) and the
fields. This can be an advantage, because the problem has a lot of parameters to work with, minimizing the
objective. Other main advantages are the availability of an exact gradient vector  and exact Hessian matrix 
for free. No computations (PDE-solves) are required, contrary to reduced space methods as described below
and in (cite ghattas, haber, leeuwen). This immediately points at the disadvantages as well; to be able to up‐
date the fields, they have to be stored in memory. The feasibility of this is highly dependend on the number of
grid points and the number of experiments. Even for modest sized problems with a relatively small number of
experiments, the Hessian will most likely be too large for direct factorization to compute the Newton step. Di‐
rect factorization is used by Grote et al. (2011) to solve interior-point systems in originating from a Lagrangian
approch to handle the constraints. Iterative methods need to be used when the required hardware is not avail‐
able for direct factorization. This has been the topic of many papers (cite) related to precondioning and solv‐
ing the Newton system for the Lagrangian formulation (the KKT-system). In this case, we are not aware of re‐
search dedicated to solve systems arising from the penalty form of the PDE-constrained optimization prob‐
lem. Although some blocks of our Newton system are the same as in the KKT system for the Lagrangian form
(see Haber), a main difference is the  block. This block is the combination of the normal equations form
of a PDE system matrix and the linear operator selecting the receiver locations. This has a particularly unfa‐
vorable eigenvalue distribution and a roughly squared condition number. No litterature has been published
dedicated to solving this block on its own using iterative methods. In this work we will therefore not consider
iterative solutions of the full Newton method, only direct factorizations on small problems. When efficient it‐
erative preconditioning and solutions methods are available, this Newton method can enjoy inexact solves of
the Newton system to save a significant number of iterations. See (Nocedal and Wright, 2000) for some theo‐
rems about the required tolerance at every iteration to preserve a desired rate of convergence of the Newton
method.

The Newton iteration uses the solution of  as the update for fields and parameters. To ensure global conver‐
gence, this update can be used in a trus-region or line-search algorithm. Only line-search algorithms are con‐
sidered in this work, without specifying the details or advocating the use of a line-search over a trust-region
approach.

Variant 2: Uncoupling fields and medium parameters in Newton’s method

This method gives up the rate of convergence of Newton’s method, as well as possiblily some robustness with
regard to local minima. This last statment is very difficult to quantify in the non-convex setting of PDE-con‐
straint optimization, especially when we are dealing with oscillatory fields. It requires numerical experiments
to test wheater this is true or not. Furthermore, theorems about the convergence rate of inexact Newton’s
method no longer hold.

Uncoupling the fields and medium parameters amounts to setting to zero, the Hessian blocks which couple
medium parameters to fields. This leads to the following Newton-type system which needs to be solved at
every iteration

This shows the benefits of this approximation of the Hessian. The update for the fields can now be computed
in parallel, each block in the block-diagonal  block can therefore be factored separately. This algorithm
allows the solution of the Newton system using direct solvers for problems a lot larger than variant 1. The ap‐
proximation to the Hessian in this variant does not approximate the relation between the medium parameters
directly, but only indirectly because the removal of the coupling between fields and medium parameter does
affect the Newton direction at every iterate. This Hessian approximation can be written a bit more explicitly as

The Hessian in equation  can be factored as

which reveals it is an Hermitian matrix, positive-semidefinite or positive-definite (depending on the rank of
the factor) with real eigenvalues. The discretization of the PDE will determine ,  and thus the (semi-)def‐
initeness of the Hessian approximation in this section. In case we use the discretization of (cite),  is full rank
and  is also full rank, with no linear dependence between the rows of  and . Because the update for the
fields  and the medium parameter updates ,  are uncoupled, we can solve every linear system in the 

 block in parallel. For the medium parameter updates we can either use a direct factorization or an iter‐
ative method. Which one will be most suitable depends on a number of things. First of all, the PDE itself, but
also the mesh-type (regular gird / grids with hard refinement etc), type of finite-differences/finite-elements
which are used determine the bandwidth, symmetry properties and eigenvalue distribution and the condition
number. Therefore it is not possible to make a general recomendation about the solution method for the
medium parameter updates.

Variant 3: Block-diagonal Hessian approximation Newton-type method.

In this variant we set all off-diagonal blocks of the Hessian corresponding to the full Newton step for objective 
 to zero. This gives the following Hessian approximation

In addition to the things we gave up to arrive at variant 2, we now also give up the coupling between the medi‐
um parameters. We only maintain the action of the Hessian blocks on each class of medium parameters sepa‐
rately. Note that this can be more than just scaling. The buoyancy for example, is inside the div-grad operator,
giving the corresponding Hessian block a differential operator structure. This can be seen in the section about
the heuristics on effets of the various Hessian approximations. The additional advantage compared to variant
2, is that even the updates for the medium parameters can be computed in parallel. This allows this variant to
be used for even larger problem when relying on direct factorizations to solve for the field and medium para‐
meter updates. By ignoring the blocks coupling the medium parameters, we reduce the bandwith of the sys‐
tem to be solved for the medium parameter updates. This cuts back on the memory requirements due to fill-
in during the factorization process.

Variant 4: Reduced-space sparse Hessian approximation

The main argument for this variant is it’s very limited memory use related to the storage of the fields corre‐
sponding to all the experiments. We will depart from the variants which store and update the fields, instead
we will solve for the fields at every iteration of a Newton-type algorithm. This was presented in Leeuwen and
Herrmann (2013b). The first step is to make sure our objective satisfies the first-order optimiality condition
with respect to the fields. To achieve this, we solve

which corresponds to the least-squares problem

In Leeuwen and Herrmann (2013b) it is also noted that this can be interpreted as a variational projection as in
Aravkin and Leeuwen (2012). This least-squares from explicitly shows that observed data information is aug‐
mented to the PDE. The solution will satisfy this observed data if the trade-off parameter  is chosen suffi‐
ciently small. We proceed by applying block-Gaussian elimination to the full Newton system . To make no‐
tation simple, partition the Hessian from equation  as

Eliminating the  block results in

which can be recognized as the Schur-complement. When we subsitute , the above simpli‐
fies to

These are the reduced-Hessian and reduced-gradient for the following reduced objective

where  is the solution to the least-squares problem . The value of the variable projection interpretation is
that this proves (insert theorem) that the stationary points of the reduced objective  are also stationary
points of the original full objective . This does not imply that the solutions generated by minimizing each of
the objectives will always be the same.

This reduced objective shows one of the main disadvantages of reduced-space methods: function evaluations
require the solution of least-squares problems. This is equivalent to the reduced-space objectives based on a
Lagrangian, which require PDE-solves for function evaluations (Haber et al., 2000). This is a problem in line-
search or trust-region algorithms. To keep the computational cost under control in a backtracking line-search
algorithm, it is common to limit the number of back-track steps and to reduce the step size considerably to
make sure a step is found quickly. This may cause the algorithm to achieve a sub-optimal rate of convergence.
In variants 1, 2 and 3 this is not a problem, because function evaluations are cheap; it merely takes some ma‐
trix-vector products. These variants should be able to find the near optimal step-length at every iteration of
the Newton-type algorithm. A second major disadvantage of reduced-space methods is that the block-elimi‐
nation turned the large and sparse full Hessian into a dense and small reduced Hessian. In certain optimiza‐
tion problem this may be a favourable trade-in, but in the PDE-constrained optimization setting, especially
when dealing with wave-phenomena, the ‘small’ dense Hessian becomes to large to store in memory. for the
reduced Hessian based on a Lagrangian objective.

One way to proceed, is to compute matrix-free matrix-vector products with dense Hessian  by
solving the linear system with the  block at every iteration of an iterative algorithm to compute the New‐
ton-type step. The linear systems in the  block can be solved using a direct factorization method, but the
computation of the Newton-type step is restricted to iterative methods. Therefore this method is only a feasi‐
ble option, if the Hessian is sufficiently well conditioned or has some usefull eigenvalue clustering. This is un‐
fortunately not the case here, therefore an efficient preconditioner is required, but unavailable at this time.
This is a significant disadvantage of the used formulation of the PDE-constrained problem using the quadratic
penalty function. It must be noted however, that in the Lagrangian case where the reduced Hessian (see Haber
et al., 2000 for the reduced Hessian based on a Lagrangian objective) is used (Haber et al. (2000),Métivier et al.
(2013),ghattas), the extra effort compared to quasi-Newton methods does not always pay off in the single-pa‐
rameter waveform-inversion problem (Métivier et al., 2013). (ghattas) describes this method in the multi-pa‐
rameter waveform inversion context, but does not show an example. It remains to be investigated how this
method will perform in the multi-parameter case. The reduced Hessian in the Lagrangian setting differs from
the one in the quadratic penalty setting in the sense that the Lagrangian based reduced Hessian requires a se‐
ries of two linear-system solves to compute a matrix-free Hessian-vector product, whereas the penalty-based
reduced Hessian requires only one. The problem of solving a series of linear-systems is less suitable for inex‐
act iterative methods, because the error from solving the first linear system is effectiveley multiplied by the
approximate inverse of the second linear system. We will not investigate the use of the reduced Hessian in this
work.

The strucure of the reduced Hessian in equation  allows an interesting alternative which still allows us to
use the reduced-Hessian. (Leeuwen and Herrmann, 2013b) proposes to use just the sparse part, . The accu‐
racy of this approximation depends on the value of , a smaller value increases the accuracy. It must be noted
that we are not primarily intested in how well  approximates , but in how well the computed
update direction using  approximates the direction which would follow when  was used as the
Hessian. Taking the sparse part from the Hessian in equation  leads to

In the single parameter estimation problem, the use of this approximation has shown to be approximately as
powerfull as the L-BFGS quasi-Newton method. Here we are primarily interested in the question if the approx‐
imate Hessian properly balances the updates for the multiple parameters, rather then rate of convergence. We
will rely on numerical experiments to show this.

Variant 5: Reduced-space sparse block-diagonal Hessian approximation

A further simplification of variant 4 is to approximate the Hessian approximation even further by dropping the
off diagonal blocks of . This uncouples the updates for the different parameter types, but does allow the up‐
dates to be computed in parallel. As in variant 3, this allows larger problems to be solved using a direct factor‐
ization method.

Memory requirements

One of the main drawbacks of algorithms which update the fields, rather than solving for them, is that all
fields need to be in memory, compared to 1 or 2 fields for the other class of algorithms. In present day parallel
computing environments, things have changed a bit. When we solve for the fields, the objective function and
its gradient can be computed in a running sum over the multiple experiments. That is why the memory re‐
quirements are so low. It is very common however, to parallize over frequencies. That is, split the separable
objective function over the multiple frequencies and compute one frequency per core/node. This is a form of
trivial parallel computing with maximum efficiency. Memory wise, the total storage of fields has increased cor‐
respondingly. This is equivalent to the algorithm of variant 2, where the objective is not intrinsically separable,
but by uncoupling the fields from medium parameters, we can achieve the same parallelism as in the variants
where we solve for the fields. Concluding, variant 2 is an algorithm which updates the fields, but is memory
wise similar to algorithms which solve for the fields. Note that this is not possible in the full Newton methods
(variant 1), because computing updates for the fields in a parallel fashion would require comminucation be‐
tween the solution processes for the medium parameter updates and field updates.

Known deficiencies of quadratic penalty methods in the PDE-constrained optimization setting

boundedness from below: In general, the objective of a quadratic penalty formulation of an equality con‐
strained problem may not be bounded from below (Nocedal and Wright, 2000). In our case the objective is the
sum of two norms, therefore the objective function value will be bounded from below by .
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Algorithm 1 Full-Newton for Quadratic Penalty form.

   while Not converged do
  1.    form Hessian and gradient     // Form (~free)
  2.     Solve for Newton direction   // Solve
  3.     Find steplength using linesearch // evaluate (~free)
  4.          // update model
    end
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Algorithm 2 field-medium parameter uncoupled Newton for Quadratic Penalty form.

  0. construct initial guess  for medium and  for each field
   while not converged do
  1.    form Hessian and gradient                    // form (~free)
  2.    ignore the  blocks      // approximate
  3.    find  & each  in parallel              // solve
  4.    find steplength  using linesearch       // evaluate (~free)
  5.     &     // update model and fields
    end
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Algorithm 3 Block-diagonal approximation of the Hessian for the Quadratic Penalty form.

   while Not converged do
  1.    form Hessian and gradient     // Form (~free)
  2.    ignore the  blocks     // Approximate
  3.     Solve for the field updates in parallel & solve for the medium parameter updates to obtain 
  4.     Find steplength using linesearch // evaluate (~free)
  5.          // update model
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Introduction

We investigate different ways to successfully estimate multiple parameters from PDE’s, with focus on the mul‐
ti-parameter Helmholtz equation. The first order coupled system of equations describing acoustic wave mo‐
tion is

The pressure field is indicated by , the vector force source term is , where  indicates the component.  is
the particle velocity and  the scalar volume injection source term.The unknown parameters are the scalar
buoyancy  and the scalar compressibility . These are the parameters we want to estimate. In an acoustic
medium, the compressibility, buoyancy and velocity ( ) are related as .

Throughout this paper, we will use the discretize-then-optimize formalism. This means equation  is the only
continuous equation. After discretization of , we restrict ourselves to the case where there are only volume
injection sources, , and rewrite the discrete version of equation  as a second order partial differential
equation (PDE). The only fied in this equation is the pressure field. This is the Helmholtz equation in a lossless
and isotropic medium.

To obtain estimates for the unknown parameters, we would like to match experimentally observed data  to
predicted data  while the predicted field  satisfies the PDE.  is a linear operator which projects the pre‐
dicted field to the receiver locations. This problem is of the general PDE-constrained optimization type

 is a linear projection operator onto the receiver locations,  is the discretized two-paramter Helmholtz ma‐
trix,  is the pressure wavefield,  is the source term and  is the measured data. The two parameters to be
estimated are the buoyancy  and the compressibility .

This paper is concerned with solution methods for problem , specifically suitable for the situation where we
want to estimate multiple parameters occuring in the same PDE. We explore methods based on a quadratic
penalty formulation of a constrained optimization problem. Most reseach for solving problem  uses a La‐
grangian formulation. We will show that the penalty formulation has some interesting advantages and disad‐
vantages compared to the Lagrangian formulation and we will derive some algorithms which exploit the ad‐
vantages of a penalty formulation, but do not suffer too much from the disadvantages. We will not discuss de‐
tails of memory consumtion and computational requirements of the proposed algorithms, compared to La‐
grangian based methods. We do however, show that the proposed algorithms are in the same ballpark as their
lagrangian counterparts, memory and compuation wise.

Memory and computational cost will be evaluated from the direct solver point of view, QR and Cholseky fac‐
torizations will be used to solve the linear systems occuring in this paper. This does not imply we favor direct
methods over iterative solvers, but this will change the entire point of view on what is computationally effi‐
cient and what is not. The fastest algorithms for PDE-constrained optimization may very well be a combina‐
tion of direct and iterative solvers. Some remarks are made about challenges for iterative solvers and places
where iterative solvers could be very efficient, compared to direct solvers.

Context, motivation and challenges

In parameter estimation problems, we almost exclusively work with multi-experiment data. In the frequency
domain which we consider in this work, the multiple experiments originate from the source(s) which excite
the fields from multiple locations which they do so at multiple frequencies. The multiple frequencies may be
due to exciting the fields multiple times, each time at a different frequency or by Fourier transforming a time-
domain signal. In the multi experiment setting, the matrices and vectors in problem  obtain a block struc‐
ture.

where the subscript indicates the experiment index.
Solving problem  using the PDE in equation  is difficult for a number of reasons. Besides the usual numeri‐
cal challenges of solving large linear and possibily ill-conditioned systems, limited availability of data and the
ill-posedness of the inverse problem, there is the difficulty of having two parameters to be estimated, occuring
in either a coupled first-order PDE system or a second-order PDE. Intuitively, this will introduce a certain
‘trade-off’ between (in this case) compressibility and buoyancy in the parameter estimation sense. This could
also be described as non-uniqueness/uncertainty of the estimation process. This is a particulary problematic
issue in this case. We can verify this with a simple example.

Example 1:

We generate ‘observed’ data in a model with a buoyancy and compressibility pertubation from the homoge‐
neous background model, which serves as the initial guess. We invert this data using the most commonly used
approch in geophysical exploration: eliminating the constraints in  and solving the unconstrained problem
by using just the reduced gradient to minimize the objective with the L-BFGS algorithm. (insert citations).
(Gradient-descent type algorithms are also widely used in exploration geophysics). The results show that we
managed to fit over 95% of the data, but the estimated parameters are obviously nowhere near the true model.
Moreover, only the compressibility is changed compared to the initial guess, the buoyance is almost un‐
touched. This example shows that inverting (effectively) for only one of the two parameters, we are able to fit
over 95% of the data anyway. This is very different in the single-parameter estimation problem. To show this,
we repeat the previous exercise, but this time we generate data using only a pertubation in the compressibility
and we only invert for the compressibility. Again, we are able to fit over 95% of the data, but this time the esti‐
mated model is very close to the true model.

Example 1 explicitly shows that using just the gradient in a quasi-Newton scheme is not up to the task of esti‐
mating the parameters. We observe that the norm of the gradients of the objective value, corresponding to the
different paramters, are very different. This causes only one of the two parameters to be updated. One could
simply scale the gradients by modifying the quasi-Newton or gradient-descent algorithm, but the question is:
how to scale these two? Putting them on equal footing may sound reasonable, but this is still a completely ar‐
bitrary and unjustified choice. Scalings of this type, but inspired by the physics of wavefields are used in (cite).
This type of approach may work well, but it requires problem dependent specification of the scaling. Another
approach to mitigate the challenges of multi-parameter estimation is to use an hirarchical strategy: Estimate
one parameter while keeping the other fixed and do this in an alternating fashion, possibly just once. This
stragety is used in (cite tarantola). This can also yield satisfactory results, but it requires a lot of parameter
tweeking and fine-tuning, to be repeated for every new problem. This strategy requires choosing which para‐
meter to start with, for how many iterations or to which objective function value. Yet another way to mitigate
the non-uniqueness and different magnitudes of the gradients is the incorporation of a priori information into
the problem. (meju gallardo) use so called ‘cross-gradient’ regularization of the inverse problem. This requires
the different estimated parameters to exhibit ‘structural similarity’, ie, they have to vary in a similar fashion. A
priori information should be very usefull, but it has to be available first. This is often not the case, because we
need a priori information about the relation between compressibility and buoyancy, not about each parame‐
ter separately (although this can be included as well). In the case of acoustic inverse problems with the earth
as the medium, we actually know that the buoyancy and compressibility may sometimes vary in a similar way,
but sometimes their relation can be completely different. (example bg model). There is also some litterature
available concerned with which parameterization to choose in multi-parameter seismic problems (cite).
These works analyse gradient direction of the reduced Lagrangian objective or partial derivatives of the PDE (

). Based on those pieces of information, it is decided which parametrization (density-velocity, compressibili‐
ty-density, etc.) should give the best parameter estimations. This is also purely focued on gradient-descent or
quasi-Newton methods, just like the other approaches described above. This totally bypasses physical infor‐
mation which is available in the Hessian. See (pratt for a physical interpretation of the Hessian in the reduced
Lagrangian). From an optimization point of view, it is well known that Newton’s method has the affine trans‐
formation invariance property (refs) and is in principle robust to ill-conditioned problems. Quasi-Newton and
gradient-descent do not have these properties.

Our approach is therefore to use the Hessian and approximations of the Hessian to estimate multiple parame‐
ters. We will evaluate if the use of the Hessian allows simultaneous estimation of multiple parameters, without
using prior information about the coupling of the parameters in the medium to be estimated, without hirar‐
chical strategies and without manually rescaling the different parts of the gradient of the objective. We will
thus focus on Newton and Gauss-Newton type algorithms.

Penalty methods for PDE-constrained optimization

A penalty formulation for solving problem  was presented in Leeuwen and Herrmann (2013b) and used for
single parameter seismic waveform inversion in Leeuwen and Herrmann (2013a). Earlier, a penalty formula‐
tion with a fixed rule for balancing the two terms was used in (cite modified gradient and contrast source). We
use the same formulation, but now for two unknown parameters

Problem  is a combination of data-misfit and PDE-misfit, where the scalar  balances the two. It is important
to note that the balancing between the two terms is the essence of a penalty method. Unlike a Lagrangian for‐
mulation of a equality constrained problem, the penalty formulation for a fixed  treats the original objective
to be minimized as well as the constraints in the same way. In other words, there is no longer a notion of what
are constraints and what should be minimized. The value of  determines what will happen. A large  will
provide results approaching the solutions to problem , while very small values for  will provide solutions to
a problem similar to , but with objective and constraints switched. Of course, the standard algorithms for
quadratic penalty methods honour the notion of minimization objective and constraints by solving a se‐
quence of problem of the form of  where each problem is solved with a different value for . This guarantees
convergence to a solution of , see theorem 17.1 in Nocedal and Wright (2000). In this paper we only consider
a single value for , so we do not solve a sequence of problems and see how well it works. The main reasons
for this approach are promising results in (cite our papers and abstracts) using a single value for  as well as
the cost of solving PDE-constrained optimization problems. For large scale problems, solving it once is al‐
ready computationally expensive, solving a sequence of problems would seriously decrease the competitive‐
ness of penalty based methods.

We can introduce the objective function for problem  as

which is an unconstrained minimization problem. We can also write this objective in it’s separable form as

where  is the index for the experiment number. This explicitly shows we can accumulate the objective in par‐
allel as a running sum. This is not the case for the gradient and Hessian in general. Another way to rewrite this
objective is in a block form, organized per angular frequency 

where , blbalalkdsf. This structure is intuitive in case direct factorization

methods are used for the solution of linear systems arising in the optimization algorithms, because it groups
all blocks in terms of the PDE discretization matrices per frequency. This form is also convenient in the simul‐
taneous source scenario, also known as randomized trace estimation (cite eldad,felix).

The first-order necessary condition for a local minimizer of this unconstrained problem are

where the partial derivative matrices are given by

which have the following multi experiment block-structure:

and the second-order necessary conditions are (in addition to satisfying the first-order conditions)

Whearas we will use the first-order necessary conditions to design our optimization algorithms, the second-
order necessary condition is used as a diagnostic.

With these standard optimality conditions defined, we can formulate several algorithms to minimize objec‐
tive . Each of which has different computational challenges, memory requirements, advantages and disad‐
vantages.

First, we return to the case of a  sufficiently small, such that the is enough emphasis on the 
term to fit the observed data  to appoximately, we essentially obtain an approximation to the problem  with
the objective and constraints switched

For now we assume that the observed data is noise free, so fitting it exactly is no concern. In the realistic case
with noise, the constraint should be relaxed to inexact data fitting. The motivation to bring this interpretation
of the quadratic penalty method for PDE-constrained optimization with a small , is to explain why we still
use the quadratic penalty form, rather than solve problem , or related problem with inexact data fit con‐
straints using a Lagrangian form. This Lagrangian form is

with  as the vector of Lagrangian multipliers for the equality constraints. There are no obstacles which keep
us from solving this constrained problem, but this form does pose some limitations on the algorithms that can
be developed.

The first order necessary conditions for a minimum of the Lagrangian in  are

Variant 1: Full Newton

This variant is the classical Newton method to minimize . At each iteration we compute :

In more explicit form this iteration can be written as

This method can be seen as the quadratic penalty objective equivalent of the Lagrangian ‘all-at-once’ method
(cite), because this method updates both the medium parameters (compressibility and buoyancy) and the
fields. This can be an advantage, because the problem has a lot of parameters to work with, minimizing the
objective. Other main advantages are the availability of an exact gradient vector  and exact Hessian matrix 
for free. No computations (PDE-solves) are required, contrary to reduced space methods as described below
and in (cite ghattas, haber, leeuwen). This immediately points at the disadvantages as well; to be able to up‐
date the fields, they have to be stored in memory. The feasibility of this is highly dependend on the number of
grid points and the number of experiments. Even for modest sized problems with a relatively small number of
experiments, the Hessian will most likely be too large for direct factorization to compute the Newton step. Di‐
rect factorization is used by Grote et al. (2011) to solve interior-point systems in originating from a Lagrangian
approch to handle the constraints. Iterative methods need to be used when the required hardware is not avail‐
able for direct factorization. This has been the topic of many papers (cite) related to precondioning and solv‐
ing the Newton system for the Lagrangian formulation (the KKT-system). In this case, we are not aware of re‐
search dedicated to solve systems arising from the penalty form of the PDE-constrained optimization prob‐
lem. Although some blocks of our Newton system are the same as in the KKT system for the Lagrangian form
(see Haber), a main difference is the  block. This block is the combination of the normal equations form
of a PDE system matrix and the linear operator selecting the receiver locations. This has a particularly unfa‐
vorable eigenvalue distribution and a roughly squared condition number. No litterature has been published
dedicated to solving this block on its own using iterative methods. In this work we will therefore not consider
iterative solutions of the full Newton method, only direct factorizations on small problems. When efficient it‐
erative preconditioning and solutions methods are available, this Newton method can enjoy inexact solves of
the Newton system to save a significant number of iterations. See (Nocedal and Wright, 2000) for some theo‐
rems about the required tolerance at every iteration to preserve a desired rate of convergence of the Newton
method.

The Newton iteration uses the solution of  as the update for fields and parameters. To ensure global conver‐
gence, this update can be used in a trus-region or line-search algorithm. Only line-search algorithms are con‐
sidered in this work, without specifying the details or advocating the use of a line-search over a trust-region
approach.

Variant 2: Uncoupling fields and medium parameters in Newton’s method

This method gives up the rate of convergence of Newton’s method, as well as possiblily some robustness with
regard to local minima. This last statment is very difficult to quantify in the non-convex setting of PDE-con‐
straint optimization, especially when we are dealing with oscillatory fields. It requires numerical experiments
to test wheater this is true or not. Furthermore, theorems about the convergence rate of inexact Newton’s
method no longer hold.

Uncoupling the fields and medium parameters amounts to setting to zero, the Hessian blocks which couple
medium parameters to fields. This leads to the following Newton-type system which needs to be solved at
every iteration

This shows the benefits of this approximation of the Hessian. The update for the fields can now be computed
in parallel, each block in the block-diagonal  block can therefore be factored separately. This algorithm
allows the solution of the Newton system using direct solvers for problems a lot larger than variant 1. The ap‐
proximation to the Hessian in this variant does not approximate the relation between the medium parameters
directly, but only indirectly because the removal of the coupling between fields and medium parameter does
affect the Newton direction at every iterate. This Hessian approximation can be written a bit more explicitly as

The Hessian in equation  can be factored as

which reveals it is an Hermitian matrix, positive-semidefinite or positive-definite (depending on the rank of
the factor) with real eigenvalues. The discretization of the PDE will determine ,  and thus the (semi-)def‐
initeness of the Hessian approximation in this section. In case we use the discretization of (cite),  is full rank
and  is also full rank, with no linear dependence between the rows of  and . Because the update for the
fields  and the medium parameter updates ,  are uncoupled, we can solve every linear system in the 

 block in parallel. For the medium parameter updates we can either use a direct factorization or an iter‐
ative method. Which one will be most suitable depends on a number of things. First of all, the PDE itself, but
also the mesh-type (regular gird / grids with hard refinement etc), type of finite-differences/finite-elements
which are used determine the bandwidth, symmetry properties and eigenvalue distribution and the condition
number. Therefore it is not possible to make a general recomendation about the solution method for the
medium parameter updates.

Variant 3: Block-diagonal Hessian approximation Newton-type method.

In this variant we set all off-diagonal blocks of the Hessian corresponding to the full Newton step for objective 
 to zero. This gives the following Hessian approximation

In addition to the things we gave up to arrive at variant 2, we now also give up the coupling between the medi‐
um parameters. We only maintain the action of the Hessian blocks on each class of medium parameters sepa‐
rately. Note that this can be more than just scaling. The buoyancy for example, is inside the div-grad operator,
giving the corresponding Hessian block a differential operator structure. This can be seen in the section about
the heuristics on effets of the various Hessian approximations. The additional advantage compared to variant
2, is that even the updates for the medium parameters can be computed in parallel. This allows this variant to
be used for even larger problem when relying on direct factorizations to solve for the field and medium para‐
meter updates. By ignoring the blocks coupling the medium parameters, we reduce the bandwith of the sys‐
tem to be solved for the medium parameter updates. This cuts back on the memory requirements due to fill-
in during the factorization process.

Variant 4: Reduced-space sparse Hessian approximation

The main argument for this variant is it’s very limited memory use related to the storage of the fields corre‐
sponding to all the experiments. We will depart from the variants which store and update the fields, instead
we will solve for the fields at every iteration of a Newton-type algorithm. This was presented in Leeuwen and
Herrmann (2013b). The first step is to make sure our objective satisfies the first-order optimiality condition
with respect to the fields. To achieve this, we solve

which corresponds to the least-squares problem

In Leeuwen and Herrmann (2013b) it is also noted that this can be interpreted as a variational projection as in
Aravkin and Leeuwen (2012). This least-squares from explicitly shows that observed data information is aug‐
mented to the PDE. The solution will satisfy this observed data if the trade-off parameter  is chosen suffi‐
ciently small. We proceed by applying block-Gaussian elimination to the full Newton system . To make no‐
tation simple, partition the Hessian from equation  as

Eliminating the  block results in

which can be recognized as the Schur-complement. When we subsitute , the above simpli‐
fies to

These are the reduced-Hessian and reduced-gradient for the following reduced objective

where  is the solution to the least-squares problem . The value of the variable projection interpretation is
that this proves (insert theorem) that the stationary points of the reduced objective  are also stationary
points of the original full objective . This does not imply that the solutions generated by minimizing each of
the objectives will always be the same.

This reduced objective shows one of the main disadvantages of reduced-space methods: function evaluations
require the solution of least-squares problems. This is equivalent to the reduced-space objectives based on a
Lagrangian, which require PDE-solves for function evaluations (Haber et al., 2000). This is a problem in line-
search or trust-region algorithms. To keep the computational cost under control in a backtracking line-search
algorithm, it is common to limit the number of back-track steps and to reduce the step size considerably to
make sure a step is found quickly. This may cause the algorithm to achieve a sub-optimal rate of convergence.
In variants 1, 2 and 3 this is not a problem, because function evaluations are cheap; it merely takes some ma‐
trix-vector products. These variants should be able to find the near optimal step-length at every iteration of
the Newton-type algorithm. A second major disadvantage of reduced-space methods is that the block-elimi‐
nation turned the large and sparse full Hessian into a dense and small reduced Hessian. In certain optimiza‐
tion problem this may be a favourable trade-in, but in the PDE-constrained optimization setting, especially
when dealing with wave-phenomena, the ‘small’ dense Hessian becomes to large to store in memory. for the
reduced Hessian based on a Lagrangian objective.

One way to proceed, is to compute matrix-free matrix-vector products with dense Hessian  by
solving the linear system with the  block at every iteration of an iterative algorithm to compute the New‐
ton-type step. The linear systems in the  block can be solved using a direct factorization method, but the
computation of the Newton-type step is restricted to iterative methods. Therefore this method is only a feasi‐
ble option, if the Hessian is sufficiently well conditioned or has some usefull eigenvalue clustering. This is un‐
fortunately not the case here, therefore an efficient preconditioner is required, but unavailable at this time.
This is a significant disadvantage of the used formulation of the PDE-constrained problem using the quadratic
penalty function. It must be noted however, that in the Lagrangian case where the reduced Hessian (see Haber
et al., 2000 for the reduced Hessian based on a Lagrangian objective) is used (Haber et al. (2000),Métivier et al.
(2013),ghattas), the extra effort compared to quasi-Newton methods does not always pay off in the single-pa‐
rameter waveform-inversion problem (Métivier et al., 2013). (ghattas) describes this method in the multi-pa‐
rameter waveform inversion context, but does not show an example. It remains to be investigated how this
method will perform in the multi-parameter case. The reduced Hessian in the Lagrangian setting differs from
the one in the quadratic penalty setting in the sense that the Lagrangian based reduced Hessian requires a se‐
ries of two linear-system solves to compute a matrix-free Hessian-vector product, whereas the penalty-based
reduced Hessian requires only one. The problem of solving a series of linear-systems is less suitable for inex‐
act iterative methods, because the error from solving the first linear system is effectiveley multiplied by the
approximate inverse of the second linear system. We will not investigate the use of the reduced Hessian in this
work.

The strucure of the reduced Hessian in equation  allows an interesting alternative which still allows us to
use the reduced-Hessian. (Leeuwen and Herrmann, 2013b) proposes to use just the sparse part, . The accu‐
racy of this approximation depends on the value of , a smaller value increases the accuracy. It must be noted
that we are not primarily intested in how well  approximates , but in how well the computed
update direction using  approximates the direction which would follow when  was used as the
Hessian. Taking the sparse part from the Hessian in equation  leads to

In the single parameter estimation problem, the use of this approximation has shown to be approximately as
powerfull as the L-BFGS quasi-Newton method. Here we are primarily interested in the question if the approx‐
imate Hessian properly balances the updates for the multiple parameters, rather then rate of convergence. We
will rely on numerical experiments to show this.

Variant 5: Reduced-space sparse block-diagonal Hessian approximation

A further simplification of variant 4 is to approximate the Hessian approximation even further by dropping the
off diagonal blocks of . This uncouples the updates for the different parameter types, but does allow the up‐
dates to be computed in parallel. As in variant 3, this allows larger problems to be solved using a direct factor‐
ization method.

Memory requirements

One of the main drawbacks of algorithms which update the fields, rather than solving for them, is that all
fields need to be in memory, compared to 1 or 2 fields for the other class of algorithms. In present day parallel
computing environments, things have changed a bit. When we solve for the fields, the objective function and
its gradient can be computed in a running sum over the multiple experiments. That is why the memory re‐
quirements are so low. It is very common however, to parallize over frequencies. That is, split the separable
objective function over the multiple frequencies and compute one frequency per core/node. This is a form of
trivial parallel computing with maximum efficiency. Memory wise, the total storage of fields has increased cor‐
respondingly. This is equivalent to the algorithm of variant 2, where the objective is not intrinsically separable,
but by uncoupling the fields from medium parameters, we can achieve the same parallelism as in the variants
where we solve for the fields. Concluding, variant 2 is an algorithm which updates the fields, but is memory
wise similar to algorithms which solve for the fields. Note that this is not possible in the full Newton methods
(variant 1), because computing updates for the fields in a parallel fashion would require comminucation be‐
tween the solution processes for the medium parameter updates and field updates.

Known deficiencies of quadratic penalty methods in the PDE-constrained optimization setting

boundedness from below: In general, the objective of a quadratic penalty formulation of an equality con‐
strained problem may not be bounded from below (Nocedal and Wright, 2000). In our case the objective is the
sum of two norms, therefore the objective function value will be bounded from below by .
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Algorithm 1 Full-Newton for Quadratic Penalty form.

   while Not converged do
  1.    form Hessian and gradient     // Form (~free)
  2.     Solve for Newton direction   // Solve
  3.     Find steplength using linesearch // evaluate (~free)
  4.          // update model
    end
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Algorithm 2 field-medium parameter uncoupled Newton for Quadratic Penalty form.

  0. construct initial guess  for medium and  for each field
   while not converged do
  1.    form Hessian and gradient                    // form (~free)
  2.    ignore the  blocks      // approximate
  3.    find  & each  in parallel              // solve
  4.    find steplength  using linesearch       // evaluate (~free)
  5.     &     // update model and fields
    end
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ϕ, ϕ∇2
u,m ∇2

m,u
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Algorithm 3 Block-diagonal approximation of the Hessian for the Quadratic Penalty form.

   while Not converged do
  1.    form Hessian and gradient     // Form (~free)
  2.    ignore the  blocks     // Approximate
  3.     Solve for the field updates in parallel & solve for the medium parameter updates to obtain 
  4.     Find steplength using linesearch // evaluate (~free)
  5.          // update model
    end
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ϕ∇2
u,u

(D − C B)( ) = ( ) − C ϕ( , κ, b)E−1 δκ

δu

ϕ∇κ

ϕ∇b
E−1∇u ū(20)

ϕ(m, u, λ) = 0∇u

(D − C B)( ) = ( ),E−1 δκ

δu

ϕ∇κ

ϕ∇b
(21)

(b, κ, λ) = ∥P − d + ∥A(m) − q .ϕ̄
1
2

ū ∥2
2

λ2

2
ū ∥2

2(22)
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D

0

Algorithm

depend	  on	  the	  updated	  model	  and	  updated	  fields
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Full-space vs reduced-space methods

FWI & WRI full

Hessian dense sparse

Hessian solve “PDE’s” ~free

gradient solve “PDE’s” ~free

memory 2 fields per parallel process
all fields in memory

(can be distributed over nodes)

function evaluation solve “PDE’s” ~free

~free = sparse matrix-vector products29
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model	  errors,	  
inaccurate	  iterative	  solutions
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FWI	  &	  WRI:	  
• error	  in	  objective	  function	  value
• error	  in	  gradient
• error	  in	  Hessian

31

Inexact full-space vs inexact reduced-space

error	  in	  medium	  parameter	  update
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FWI	  &	  WRI:	  
• error	  in	  objective	  function	  value
• error	  in	  gradient
• error	  in	  Hessian

Full-‐space	  from	  WRI:
• objective	  function	  value	  always	  exact
• gradient	  always	  exact
• Hessian	  always	  exact

32

Inexact full-space vs inexact reduced-space

error	  in	  medium	  parameter	  update

0	  iterations	  	  	  	  	  gradient	  descent
many	  iterations	  	  	  	  	  Newton’s	  method
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Toy examples

Using	  a	  direct	  solver:
• similar	  reconstruction	  quality	  compared	  to	  WRI+diagonal	  Hessian	  
approximation

• need	  to	  test	  on	  more	  realistic	  models.
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Memory requirements

save	  all	  fields	  for	  all	  frequencies	  &	  sources
can	  be	  distributed	  over	  multiple	  nodes

Feasible?	  Need
• parallel	  computing
• simultaneous	  sources
• small	  frequency	  batches
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Computational cost

Independent	  update	  computation
No	  communication	  between	  compute	  nodes	  to	  compute	  updates

1	  iteration	  of	  WRI	  ≈	  1	  iteration	  of	  full-‐space	  Newton	  type	  quadratic	  penalty
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Conclusions

Constructed	  a	  full-‐space	  method	  which:

• updates	  fields	  &	  medium	  parameters	  simultaneously
• computational	  cost	  ≈	  reduced-‐space	  methods
• similar	  parallelism	  as	  in	  FWI	  &	  WRI
• many	  properties	  are	  different	  from	  FWI	  &	  WRI
• promising	  results	  with	  iterative	  solvers

• con:	  need	  to	  store	  all	  fields
• but,	  less	  storage	  needed	  compared	  to	  Lagrangian	  full-‐space	  methods
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Current & future work

Test	  on	  more	  realistic	  examples.
Evaluate	  reconstruction	  quality	  compared	  to	  WRI.
Maximize	  benefit	  from	  inexact	  update	  computation.
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