Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Quadratic-penalty based full-space methods for waveform inversion

Bas Peters SINBAD Fall Consortium meeting, 2014. Whistler, BC.

Tuesday, December 9, 14

Waveform inversion

Works well if initial model is good

Waveform inversion – poor start model

3

Wavefield reconstruction inversion [T. van Leeuwen & F.J. Herrmann, 2013]

Less sensitive to

- starting models compared to FWI
- missing low-frequency data

Avoids cycle-skipping problems by virtue of extending the search space.

But, requires reasonable accurate solve of the augmented wave equation...

Wavefield reconstruction inversion

Can we do better?

Maybe full-space methods?

But, at the gain of no longer insisting on accurate solves...

Still limitations on quality of start models & missing low-frequencies

• at the "expense" of storing 2 copies of monochromatic wavefields

Toy problem

- cross-well setting
- 4 frequencies [6-10] Hz
- 5 simultaneous sources
- 5 receivers

Tuesday, December 9, 14

7

Toy problem

direct solve, full space, λ =1000

direct solve, reduced space, λ =1000

direct solution for least-squares problems

9

accurate iterative solution for least-squares problems

inaccurate iterative solution for least-squares problems

Toy problem

model errors, direct solver

model errors

Tuesday, December 9, 14

Toy problem

Inexact iterative linear system solves:

- full-space method not very sensitive
- WRI & FWI quite sensitive

olves: ensitive

Full-space vs reduced-space methods **Bottom line**

reduced-space: solve for the fields

full-space:

- update the medium parameters
- update fields & medium parameters

Full-space vs reduced-space methods **Bottom line**

reduced-space: solve for the fields

full-space:

- update the medium parameters
- update fields & medium parameters

Full-space vs reduced-space methods **Bottom line**

reduced-space: solve for the fields

full-space: update fields & medium parameters ← joint updating

Full-space vs reduced-space methods

FWI & WRI are in the reduced-space class –i.e., wave-equations are solved Full-space is commonly used in a Lagrangian setting. Because of memory requirements, rarely used in (academic) geophysics. [EM: E. Haber et al., 2004 ; Seismic: M. J. Grothe et al., 2011]

Problem formulation:

$$\min_{\mathbf{m},\mathbf{u}} \frac{1}{2} \|\mathbf{P}\mathbf{u} - \mathbf{d}\|_2^2 \quad \text{s.t.}$$

$\mathbf{H}(\mathbf{m})\mathbf{u} = \mathbf{q}$

Quadratic penalty form (WRI):

$\phi(\mathbf{m}, \mathbf{u}, \lambda) = \frac{1}{2} \| \mathbf{P} \mathbf{u} \|$

$$-\mathbf{d}\|_{2}^{2} + rac{\lambda^{2}}{2}\|\mathbf{H}(\mathbf{m})\mathbf{u} - \mathbf{q}\|_{2}^{2}$$

Quadratic penalty form (WRI):

Newton's method:

$\begin{pmatrix} \mathbf{P}^*\mathbf{P} + \lambda^2 \mathbf{H}^*\mathbf{H} & \nabla_{\mathbf{h}\mathbf{m}}\phi \\ \nabla_{\mathbf{h}\mathbf{m}}\phi & \lambda^2 \mathbf{G}_{\mathbf{m}}^*\mathbf{G}_{\mathbf{m}} \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{u}} \\ \delta_{\mathbf{m}} \end{pmatrix} = -\begin{pmatrix} \mathbf{P}^*(\mathbf{P}\mathbf{u} - \mathbf{d}) + \lambda^2 \mathbf{H}^*(\mathbf{H}\mathbf{u} - \mathbf{q}) \\ \lambda^2 \mathbf{G}_{\mathbf{m}}^*(\mathbf{H}\mathbf{u} - \mathbf{q}) \end{pmatrix}$

Approximate Hessian:

$\begin{pmatrix} \mathbf{P}^*\mathbf{P} + \lambda^2 \mathbf{H}^*\mathbf{H} & 0\\ 0 & \lambda^2 \mathbf{G}_{\mathbf{m}}^*\mathbf{G}_{\mathbf{m}} \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{u}}\\ \delta_{\mathbf{m}} \end{pmatrix} = -\begin{pmatrix} \mathbf{P}^*(\mathbf{P}\mathbf{u} - \mathbf{d}) + \lambda^2 \mathbf{H}^*(\mathbf{H}\mathbf{u} - \mathbf{q})\\ \lambda^2 \mathbf{G}_{\mathbf{m}}^*(\mathbf{H}\mathbf{u} - \mathbf{q}) \end{pmatrix}$

Approximate Hessian:

$\begin{pmatrix} \mathbf{P}^*\mathbf{P} + \lambda^2 \mathbf{H}^*\mathbf{H} & 0\\ 0 & \lambda^2 \mathbf{G}_{\mathbf{m}}^*\mathbf{G}_{\mathbf{m}} \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{u}}\\ \delta_{\mathbf{m}} \end{pmatrix} = - \begin{pmatrix} \mathbf{P}^*(\mathbf{P}\mathbf{u} - \mathbf{d}) + \lambda^2 \mathbf{H}^*(\mathbf{H}\mathbf{u} - \mathbf{q})\\ \lambda^2 \mathbf{G}_{\mathbf{m}}^*(\mathbf{H}\mathbf{u} - \mathbf{q}) \end{pmatrix}$

Can be solved inexactly (cheap)!

Algorithm

- 0. construct initial guess **m** for medium and \mathbf{u}_i for each field while not converged do
- 1. form Hessian and gradient // form (~free)
- 2. ignore the $\nabla^2_{\mathbf{u},\mathbf{m}}\phi, \nabla^2_{\mathbf{m},\mathbf{u}}\phi$ blocks // approximate
- 3. find $\delta \mathbf{m}$ & each $\delta \mathbf{u}_i$ in parallel // solve
- find steplength α using linesearch // evaluate (~free) 4.
- 5. $\mathbf{m} = \mathbf{m} + \alpha \delta \mathbf{m} \& \mathbf{u} = \mathbf{u} + \alpha \delta \mathbf{u}$ // update model and fields end

Algorithm

- 0. construct initial guess \mathbf{m} for medium and \mathbf{u}_i for each field while not converged do
- 1. form Hessian and gradient
- 2. ignore the $\nabla^2_{\mathbf{u},\mathbf{m}}\phi, \nabla^2_{\mathbf{m},\mathbf{u}}\phi$ blocks //
- 3. find $\delta \mathbf{m}$ & each $\delta \mathbf{u}_i$ in parallel
- find steplength α using linesearch 4.
- 5. $\mathbf{m} = \mathbf{m} + \alpha \delta \mathbf{m} \& \mathbf{u} = \mathbf{u} + \alpha \delta \mathbf{u}$ // update model and f end

// form (~free)	
// approximate // solve ←	medium and field updated are independent
// undate model and fie	lds

Algorithm

0. construct initial guess **m** for medium and \mathbf{u}_i for each field while not converged do 1. form Hessian and gradient // form (~free) 2. ignore the $\nabla^2_{\mathbf{u},\mathbf{m}}\phi, \nabla^2_{\mathbf{m},\mathbf{u}}\phi$ blocks // approximate 3. find $\delta \mathbf{m}$ & each $\delta \mathbf{u}_i$ in parallel // solve find steplength α using linesearch // evaluate (~free) 4. 5. $\mathbf{m} = \mathbf{m} + \alpha \delta \mathbf{m} \& \mathbf{u} = \mathbf{u} + \alpha \delta \mathbf{u}$ // update model and fields

end

depend on the updated model and updated fields

Full-space vs reduced-space methods

	FWI & WRI
Hessian	dense
Hessian	solve "PDE's'
gradient	solve "PDE's'
memory	2 fields per parallel
function evaluation	solve "PDE's'

~free = sparse matrix-vector products

Inexact full-space vs inexact reduced-space

FWI & WRI:

- error in objective function value
- error in gradient
- error in Hessian

error in medium parameter update

Inexact full-space vs inexact reduced-space

FWI & WRI:

- error in objective function value
- error in gradient
- error in Hessian

Full-space from WRI:

- objective function value always exact
- gradient always exact \longrightarrow 0 iterations \rightarrow gradient descent many iterations \rightarrow Newton's method
- Hessian always exact

rror in medium parameter update

Toy examples

Using a direct solver:

- approximation
- need to test on more realistic models.

• similar reconstruction quality compared to WRI+diagonal Hessian

Memory requirements

save all fields for all frequencies & sources can be distributed over multiple nodes

Feasible? Need

- parallel computing
- simultaneous sources
- small frequency batches

Computational cost

Independent update computation No communication between compute nodes to compute updates

1 iteration of WRI \approx 1 iteration of full-space Newton type quadratic penalty

Conclusions

Constructed a full-space method which:

- updates fields & medium parameters simultaneously
- computational cost ≈ reduced-space methods
- similar parallelism as in FWI & WRI
- many properties are different from FWI & WRI
- promising results with iterative solvers
- con: need to store all fields

but, less storage needed compared to Lagrangian full-space methods

Current & future work

Test on more realistic examples. Evaluate reconstruction quality compared to WRI. Maximize benefit from inexact update computation.

Acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

