waveform inversion \\ \title{

Quadratic-penalty based full-space methods for

}
 \title{

Quadratic-penalty based full-space methods for

}

SINBAD Fall Consortium meeting, 2014.

University of British Columbia
and
\qquad
\square
British Columbia
\qquad .
,
\qquad

 , 2 2

Waveform inversion

Works well if initial model is good

Waveform inversion - poor start model

Wavefield reconstruction inversion [T. van Leeuwen \& f.J. Hermann, 2013]

Less sensitive to

- starting models compared to FWI
- missing low-frequency data

Avoids cycle-skipping problems by virtue of extending the search space.
But, requires reasonable accurate solve of the augmented wave equation...

Wavefield reconstruction inversion

Still limitations on quality of start models \& missing low-frequencies
Can we do better?
Maybe full-space methods?

- at the "expense" of storing 2 copies of monochromatic wavefields

But, at the gain of no longer insisting on accurate solves...

Toy problem

- cross-well setting
- 4 frequencies [6-10] Hz
- 5 simultaneous sources
- 5 receivers

Toy problem

Toy problem

Toy problem

Toy problem

Toy problem
model errors, direct solver

Toy problem

model errors, accurate iterative solutions

Toy problem
model errors,
inaccurate iterative solutions $\stackrel{\text { E }}{=}$

Toy problem

Inexact iterative linear system solves:

- full-space method not very sensitive
- WRI \& FWI quite sensitive

Full-space vs reduced-space methods

Bottom line

reduced-space: solve for the fields
update the medium parameters
full-space: update fields \& medium parameters

Full-space vs reduced-space methods

Bottom line

reduced-space: solve for the fields update the medium parameters
\longleftarrow alternating strategy
full-space: update fields \& medium parameters

Full-space vs reduced-space methods

Bottom line

reduced-space: solve for the fields update the medium parameters
\longleftarrow alternating strategy
full-space:
update fields \& medium parameters $\leftarrow \quad$ joint updating

Full-space vs reduced-space methods

FWI \& WRI are in the reduced-space class -i.e., wave-equations are solved

Full-space is commonly used in a Lagrangian setting.
Because of memory requirements, rarely used in (academic) geophysics. [EM: E. Haber et al., 2004 ; Seismic: M. J. Grothe et al., 2011]

Short derivation

$$
\begin{aligned}
& \text { Problem formulation: } \\
& \min _{\mathbf{m}, \mathbf{u}} \frac{1}{2}\|\mathbf{P u}-\mathbf{d}\|_{2}^{2} \quad \text { s.t. } \quad \mathbf{H}(\mathbf{m}) \mathbf{u}=\mathbf{q}
\end{aligned}
$$

Short derivation

Quadratic penalty form (WRI):

$$
\phi(\mathbf{m}, \mathbf{u}, \lambda)=\frac{1}{2}\|\mathbf{P u}-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{H}(\mathbf{m}) \mathbf{u}-\mathbf{q}\|_{2}^{2}
$$

Short derivation

Quadratic penalty form (WRI):

$$
\phi(\mathbf{m}, \mathbf{u}, \lambda)=\frac{1}{2}\|\mathbf{P u}-\mathbf{d}\|_{2}^{2}+\frac{\lambda^{2}}{2}\|\mathbf{H}(\mathbf{m}) \mathbf{u}-\mathbf{q}\|_{2}^{2}
$$

$$
\left(\begin{array}{cccc}
\mathbf{P}_{1} & & & \\
& \mathbf{P}_{2} & & \\
& & \ddots & \\
& & & \mathbf{P}_{k}
\end{array}\right)\left(\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\vdots \\
\mathbf{u}_{k}
\end{array}\right)-\left(\begin{array}{c}
\mathbf{d}_{1} \\
\mathbf{d}_{2} \\
\vdots \\
\mathbf{d}_{k}
\end{array}\right) \quad\left(\begin{array}{cccc}
\mathbf{H}_{1} & & & \\
& \mathbf{H}_{2} & & \\
& & \ddots & \\
& & & \mathbf{H}_{k}
\end{array}\right)\left(\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\vdots \\
\mathbf{u}_{k}
\end{array}\right)-\left(\begin{array}{c}
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\vdots \\
\mathbf{q}_{k}
\end{array}\right)
$$

Short derivation

Short derivation

Newton's method:

$$
\left(\begin{array}{cc}
\mathbf{P}^{*} \mathbf{P}+\lambda^{2} \mathbf{H}^{*} \mathbf{H} & \nabla \mathbf{Z}_{\mathbf{m}} \phi \\
\nabla \mathbf{A}_{\mathbf{z}}, \mathbf{u} \phi & \lambda^{2} \mathbf{G}_{\mathbf{m}}^{*} \mathbf{G}_{\mathbf{m}}
\end{array}\right)\binom{\delta_{\mathbf{u}}}{\delta_{\mathbf{m}}}=-\binom{\mathbf{P}^{*}(\mathbf{P u}-\mathbf{d})+\lambda^{2} \mathbf{H}^{*}(\mathbf{H u}-\mathbf{q})}{\lambda^{2} \mathbf{G}_{\mathbf{m}}^{*}(\mathbf{H u}-\mathbf{q})}
$$

Short derivation

Approximate Hessian:

$$
\left(\begin{array}{cc}
\mathbf{P}^{*} \mathbf{P}+\lambda^{2} \mathbf{H}^{*} \mathbf{H} & 0 \\
0 & \lambda^{2} \mathbf{G}_{\mathbf{m}}^{*} \mathbf{G}_{\mathbf{m}}
\end{array}\right)\binom{\delta_{\mathbf{u}}}{\delta_{\mathbf{m}}}=-\binom{\mathbf{P}^{*}(\mathbf{P u}-\mathbf{d})+\lambda^{2} \mathbf{H}^{*}(\mathbf{H u}-\mathbf{q})}{\lambda^{2} \mathbf{G}_{\mathbf{m}}^{*}(\mathbf{H u}-\mathbf{q})}
$$

Short derivation

Approximate Hessian:

$$
\left(\begin{array}{cc}
\mathbf{P}^{*} \mathbf{P}+\lambda^{2} \mathbf{H}^{*} \mathbf{H} & 0 \\
0 & \lambda^{2} \mathbf{G}_{\mathbf{m}}^{*} \mathbf{G}_{\mathbf{m}}
\end{array}\right)\binom{\delta_{\mathbf{u}}}{\delta_{\mathbf{m}}}=-\binom{\mathbf{P}^{*}(\mathbf{P u}-\mathbf{d})+\lambda^{2} \mathbf{H}^{*}(\mathbf{H} \mathbf{u}-\mathbf{q})}{\lambda^{2} \mathbf{G}_{\mathbf{m}}^{*}(\mathbf{H u}-\mathbf{q})}
$$

Can be solved inexactly (cheap)!

Algorithm

0 . construct initial guess \mathbf{m} for medium and \mathbf{u}_{i} for each field while not converged do

1. form Hessian and gradient
2. ignore the $\nabla_{\mathbf{u}, \mathbf{m}}^{2} \phi, \nabla_{\mathbf{m}, \mathbf{u}}^{2} \phi$ blocks // approximate
3. find $\delta \mathbf{m} \&$ each $\delta \mathbf{u}_{i}$ in parallel // solve
4. find steplength α using linesearch // evaluate (~free)
5. $\mathbf{m}=\mathbf{m}+\alpha \delta \mathbf{m} \& \mathbf{u}=\mathbf{u}+\alpha \delta \mathbf{u} / /$ update model and fields end

Algorithm

0 . construct initial guess \mathbf{m} for medium and \mathbf{u}_{i} for each field while not converged do

1. form Hessian and gradient
2. ignore the $\nabla_{\mathbf{u}, \mathbf{m}}^{2} \phi, \nabla_{\mathbf{m}, \mathbf{u}}^{2} \phi$ blocks // form (~free)
3. find $\delta \mathbf{m} \&$ each $\delta \mathbf{u}_{i}$ in parallel
4. find steplength α using linesearch
// approximate
// solve
 medium and field updates
// evaluate (~free) are independent
5. $\mathbf{m}=\mathbf{m}+\alpha \delta \mathbf{m} \& \mathbf{u}=\mathbf{u}+\alpha \delta \mathbf{u} \quad / /$ update model and fields end

Algorithm

0 . construct initial guess \mathbf{m} for medium and \mathbf{u}_{i} for each field while not converged do depend on the updated model and updated fields

1. form Hessian and gradient // form (~free)
2. ignore the $\nabla_{\mathbf{u}, \mathbf{m}}^{2} \phi, \nabla_{\mathbf{m}, \mathbf{u}}^{2} \phi$ blocks // approximate
3. find $\delta \mathbf{m} \&$ each $\delta \mathbf{u}_{i}$ in parallel // solve
4. find steplength α using linesearch // evaluate (~free)
5. $\mathbf{m}=\mathbf{m}+\alpha \delta \mathbf{m} \& \mathbf{u}=\mathbf{u}+\alpha \delta \mathbf{u} / /$ update model and fields end

Full-space vs reduced-space methods

	FWI \&WRI	full
Hessian	dense	sparse
Hessian	solve "PDE's"	\sim free
gradient	solve "PDE's"	\sim free
memory	2 fields per parallel process	all fields in memory
function evaluation		solve "PDE's"

Previous example.
model errors
model errors,
inaccurate iterative solutions $=$

Inexact full-space vs inexact reduced-space

FWI \& WRI:

- error in objective function value
- error in gradient
- error in Hessian

error in medium parameter update

Inexact full-space vs inexact reduced-space

FWI \& WRI:

- error in objective function value
- error in gradient
- error in Hessian

Full-space from WRI:

- objective function value always exact
- gradient always exact $\longrightarrow 0$ iterations \rightarrow gradient descent
- Hessian always exact many iterations \rightarrow Newton's method

Toy examples

Using a direct solver:

- similar reconstruction quality compared to WRI+diagonal Hessian approximation
- need to test on more realistic models.

Memory requirements

save all fields for all frequencies \& sources
can be distributed over multiple nodes

Feasible? Need

- parallel computing
- simultaneous sources
- small frequency batches

Computational cost

Independent update computation
No communication between compute nodes to compute updates

1 iteration of WRI ≈ 1 iteration of full-space Newton type quadratic penalty

Conclusions

Constructed a full-space method which:

- updates fields \& medium parameters simultaneously
- computational cost \approx reduced-space methods
- similar parallelism as in FWI \& WRI
- many properties are different from FWI \& WRI
- promising results with iterative solvers
- con: need to store all fields
- but, less storage needed compared to Lagrangian full-space methods

Current \& future work

Test on more realistic examples.
Evaluate reconstruction quality compared to WRI.
Maximize benefit from inexact update computation.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

