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Motivation

Acquisition challenges
¢ highly subsampled data

Data exhibits low-rank structure
e SVD-free matrix completion

Benefits of Alternating Optimization procedures
e problems become tractable




Outline

Alternating Optimization

Nuclear Norm Minimization
e factorized formulation
e can we benefit from alternating optimization?
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Motivation: Variable Decomposition
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Benefits:
e memory efficiency
e computational efficiency
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Motivation: Variable Decomposition
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Benefits:
e memory efficiency
e computational efficiency
o flexibility
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Xu, Yin. “A Block Coordinate Descent Method for Regularized Multiconvex Optimization
with Appications to Nonnegative Tensor Factorization and Completion”. SIAM 2013

Alternating Optimization

Want to solve:

min f($17x27 SR 7'7;8) T ZTZ(.I‘@)

reX

f is multi-convex
each 7; is convex
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Xu, Yin. “A Block Coordinate Descent Method for Regularized Multiconvex Optimization
with Appications to Nonnegative Tensor Factorization and Completion”. SIAM 2013

Alternating Optimization

Algorithm :
1.Initialization: choose initial point(a:(l), xg, . ,xg)
2. fork=1,2,...,7 do

| | | Alternate optimization
4.z} < arg i fi (i) + riai) | P

0. end for

Output: (z?,z2,..., o

between factors
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Conclusion of Alternating Minimization

Problem becomes tractable
¢ solve main problem via simpler subproblems

Computationally efficient
e “shown to be superior than other procedures in both speed and quality” - Xu, Yin




Outline

Alternating Optimization

Nuclear Norm Minimization

e factorized formulation
e can we benefit from alternating optimization?
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Matrix Factorization

Q"I“Xm
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X € Rxm™

L - RnXT

X = LRY
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Matrix Factorization

X e R™*™m| = | RH e RPm
L € R"%
|
Choose factorization parameter r < min(n, m)
X = LR"
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[Rennie and Srebro 2005]

Nuclear Norm Minimization- Factorized Form
X = LR"
» Nuclear norm is bounded by

1
X[l < S(LlE + [IR[[7)

where [II7 is sum of squares of all entries

» choose 1 explicitly & avoid costly SVD’s
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Nuclear Norm Minimization- Factorized Form

We want to solve

. 1
min

omin o S(|T[E A+ [RIE) st ACRY) bl[F <o
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Nuclear Norm Minimization- Factorized Form
We want to solve

, 1
min S(LIE + |RIE) st |JALRY) -bl[g <o

LERnX'r’,RERmXT’ 2 w . y
| r2 f

convex functions multi-convex function
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Nuclear Norm Minimization- Factorized Form

We want to solve

1
| S (|| RIIZ) st. |A(LRY) — bll2 <
Lepein e ([l R JA(LR™) = bz <o
1 . f"
convexfunctions multi-convex function
Let’s Alternate!
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Alternating Nuclear Norm Minimization

1. Input: A, b
2. Initialize: LY to be the top-r left singular vectors of b
3. fort=0,....7 —1do

4.

R = min R st [JALRY) — bl <o
Rermxr

5%

1

L = min I st AR ) — bl < 0,
E nxr

6. end for

7. Return X = LY (R")#
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Implementation

pmin o IRIE st [ALRY) —bl% < o,

» approximately solve a series of LASSO,formulation

v(T) = m];i{n JAL'RY) — b2 s.t

where T is the regularization parameter
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Experiments: Nelson 2-D seismic line

1024 x 401 x 401 matrix
e 80% missing traces
e Factorization parameter adjusted from low to high frequency

¢ Jittered subsampling
e solve with SPGL1

Compare: Alternating vs Non Alternating
e 6 alternations, 15 iterations per alternation
e 180 iterations total for both
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Experiments Nelson Data Set (80% Mlssmg Traces)
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Experiments Nelson Data Set (80% Mlssmg Traces)
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Experimenis Nelson Data Set (80% Missing Traces)
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Nelson Dataset, Receiver (862.5 m)

Time (s)
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Nelson Dataset, Receiver (862.5 m)

Time (s)

1000 1500 2000 2500
Source (
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Nelson, Receiver (862.5 m) 80% Missing Sources
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Nelson, Recovered Alternating
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Nelson, Recovered Alternating
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Difference, Recovered Alternating

SNR=9.7dB
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Difference, Recovered Alternating

SNR=9.7dB
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Experiments: Gulf Of Mexico 7Hz Slice

4001 x 4001 matrix (factorization parameter = 80)
¢ 90% missing traces

e Jlttered subsampling
e solve with SPGL1

Compare: Alternating vs Non Alternating
e 10 alternations, 15 iterations per alternation
e 300 iterations total for both
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Receiver (k

Experiments: Recovered Non Alternating

Gulf Of Mexico, Recovered Non Alternating

Difference, Recovered Non Alternating
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Experiments: Recovered Alternating

Gulf Of Mexico, Recovered Alternating Difference, Recovered Alternating
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Experiments: Regularization + Interpolation

Gulf Of Suez 10 hz slice - 354 x 354 matrix
e irregular data

® varying % missing sources

e Jittered subsampling

Compare: Alternating vs Non Alternating
e 6 alternations, 15 iterations per alternation
e 180 iterations total for both
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Experiments: Regularization + Interpolation

solve:

1
| ~ULE : R : 1. LRH — b 2 <
Lo min S UEIE + IRI[F) st JALRT) —bllp <o

A =RMNSH

where -
R : restriction operator

M : measurement operator
N : regularization operator
S* : transform operator
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Experiments: Regularization + Interpolation
Data Regularization + Interpolation
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Computational Cost

with and without SVD
Percentage missing sources 50.0% 75.0%
0 0.1 0.1 0.1 0.1
SNR (dB) 17.3 18.3 1 1.6 | 1.5
Matrix completion w/ SVD .
time (sec) 812 937 790 765
SNR (dB) 17.6 18.4 12.6 13.3
Matrix completion w/o SVD .
time (sec) 8 10 8 7
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Computational Cost

Matrix Completion vs Curvelet-based methods

Percentage missing sources 50.0% 75.0%
0 0.1 0.1 0.1 0.1
SNR (dB) 17.3 18.3 1 1.6 | 1.5
Matrix completion w/ SVD .
time (sec) 812.0 937.0 790.0 765.0
SNR (dB) 7.6 18.4 12.6 3.1
Matrix completion w/o SVD .
time (sec) 8 10 8 7
Curvelet-based sparsit)/ SNR (CI B) | 7.4 18.6 2.5 2.8
promotion time (sec) 879 989 817 1010
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Conclusions

» Alternating Optimization can better handle complicated cases
e Highly sub sampled data ( missing > 80%)
e Complex data (high frequencies)

» Alternating Optimization does not increase time complexity
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Future Work

» Analysis of method
¢ How many alternations are needed?

» Consider method for other applications
e Tensor Completion
® Source Separation
e Parallel Matrix Completion
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Future Work

» Analysis of method
¢ How many alternations are needed?

» Consider method for other applications
e Tensor Completion
o Source.SeparatioR ..
ParaIIeI Matrlx Completlon ,'

41

Monday, December 8, 14




Monday, December 8, 14

LR parallel matrix multiplication

T

X =LR'




L.:RY

L:RS

L:R3

LR,

L.:R:

L,RY

LoRS

Lo.R3

L,R,

L.R:

Worker 1 L1 Rl
Worker 2 Lz Rz
Worker 3 L3 RS
Worker 4 L4 R4
Worker 5 L 5 R5

LsRi

LsRa

LsR3

LsR;

LsR:

L.R7

L,RY

LsR3

L.R}

L.R:

LsRi

LsRa

LsR3

LsR;

LsR:
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