Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Tuesday afternoon Surface multiples, source wavelets, and imaging

Tuesday, December 9, 14

First half

Extreme SRME -> EPSI

Surface-related multiple removal as a deconvolution problem • Get explicitly the *source wavelet* **Q** • and a (discrete) Green's function for the primary wavefield **G**

Improving model for **G**: deal with data gaps Tim **Ernie** Improving model for **Q**: better deconvolution

Second half

EPSI's model (separating G and Q) is very helpful for imaging multiples naturally translate to injecting data into source term • helps with scaling ambiguity in inversion imaging • improves azimuthal range of (extended) image gathers

Ning **Kumar** Computing extended image gathers with this model Ning

Incorporating into a fast inversion imaging scheme How the EPSI model helps with source scaling

Dealing with acquisition gaps in Robust EPSI without interpolation Tim T.Y. Lin

Tuesday, December 9, 14

Talk outline

Brief review of EPSI and Robust EPSI

2. Algorithmic implications for Robust EPSI

Bonus: Multi-scale EPSI for acceleration and deconvolution (Ernie)

*missing data in aperture gaps, not undersampling

1. Modifying EPSI prediction model to account for missing data *

EPSI model of surface multiples

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

Q

- total up-going wavefield Ρ
 - down-going source signature
- primary impulse response G

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

- total up-going wavefield Ρ $\mathbf{P_o}$ primary wavefield
- "matching" operator A(f)

SRME-produced primary

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

A(f)

- total up-going wavefield Ρ
- $\mathbf{P_o}$ primary wavefield
 - "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

- total up-going wavefield Ρ $\mathbf{P_o}$ primary wavefield
 - "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

A(f)

- total up-going wavefield Ρ $\mathbf{P_o}$ primary wavefield
 - "matching" operator

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

primary wavefield $\mathbf{P_o}$ "matching" operator A(f)

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

primary impulse response G

predicted data from SRME

 $\mathbf{P_o} = \mathbf{Q}\mathbf{G}$ $A(f) = -\mathbf{Q}^{-1}$

Q

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

- total up-going wavefield Ρ
 - down-going source signature
- primary impulse response G

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

Do Inversion for G and Q by minimizing:

$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} \|\mathbf{P} - (\mathbf{Q}\mathbf{G} - \mathbf{G}\mathbf{P})\|_2^2$

15

Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

predicted data from SRME

Based on Estimation of Primaries by Sparse Inversion (va

Inversion objective:

Tuesday, December 9, 14

Based on Estimation of Primaries by Sparse Inversion (va

Inversion objective:

Tuesday, December 9, 14

Based on Estimation of Primaries by Sparse Inversion (va

Inversion objective:

Based on Estimation of Primaries by Sparse Inversion (va

Inversion objective:

So what happens...

when there are gaps in your aperture?

Based on Estimation of Primaries by Sparse Inversion (va

Inversion objective:

Even assuming we already have the perfect G...

23

Main idea

Modify the relationship $\mathbf{P}=\mathbf{Q}\mathbf{G}-\mathbf{G}\mathbf{P}$ to account for the missing contribution

A brief discussion of the inversion

Inversion objective:

Tuesday, December 9, 14

$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} \|\mathbf{P} - (\mathbf{Q}\mathbf{G} - \mathbf{G}\mathbf{P})\|_2^2$

Write the EPSI data prediction as an operator M

In time domain (lower-case: whole dataset in time domain)

recorded data $\mathbf{p} = \mathcal{M}(\mathbf{g}, \mathbf{q})$

Inversion objective:

 $f(\mathbf{g}, \mathbf{q}) = \frac{1}{2} \|\mathbf{p} - \mathcal{M}(\mathbf{g}, \mathbf{q})\|_2^2$

- predicted data from SRME
 - $\mathcal{M}(\mathbf{g},\mathbf{q}) := \mathcal{F}_{\mathbf{t}}^{\dagger} \operatorname{BlockDiag}_{\omega_{1}\cdots\omega_{n,f}} [(q(\omega)\mathbf{I}-\mathbf{P})^{\dagger} \otimes \mathbf{I}] \mathcal{F}_{\mathbf{t}}\mathbf{g}$

Solving the EPSI problem

Linearizations

In fact it is bilinear: QG = P + GP

 $\mathbf{M}_{\widetilde{q}}\mathbf{g} = \mathcal{M}(\mathbf{g}, \widetilde{\mathbf{q}}) \qquad \mathbf{M}_{\widetilde{g}}\mathbf{q} = \mathcal{M}(\mathbf{q}, \widetilde{\mathbf{g}})$

27

Solving the EPSI problem

Linearizations

Associated objectives:

$$f_{\tilde{q}}(\mathbf{g}) = \frac{1}{2} \|\mathbf{p} - \mathbf{M}_{\tilde{q}}\mathbf{g}\|_2^2$$

$$f_{\tilde{g}}(\mathbf{q}) = \frac{1}{2} \|\mathbf{p} - \mathbf{M}_{\tilde{g}}\mathbf{q}\|_2^2$$

Solving the EPSI problem

Do:

$\mathbf{g}_{k+1} = \mathbf{g}_k + \alpha \mathcal{S}(\nabla f_{q_k}(\mathbf{g}_k))$ $\mathbf{q}_{k+1} = \mathbf{q}_k + \beta \nabla f_{g_{k+1}}(\mathbf{q}_k)$

Gradient sparsity S : pick largest ρ elements per trace

Robust EPSI L1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 Geophysics]

While
$$\|\mathbf{p} - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|$$

determine new τ_k f $\mathbf{g}_{k+1} = \operatorname*{arg\,min}_{\mathbf{g}} \|\mathbf{p}$ \mathbf{g} $\mathbf{q}_{k+1} = \operatorname*{arg\,min}_{\mathbf{q}} \|\mathbf{p}$

 $|_2 > \sigma$

from the Pareto curve

 $\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g} \|_2$ s.t. $\|\mathbf{g}\|_1 \le \tau_k$

 $\mathbf{p} - \mathbf{M}_{g_{k+1}} \mathbf{q} \|_2$

Choosing Tau from the Pareto curve

Look at the solution space and the line of optimal solutions (Pareto curve)

minimize

 $||x||_1$ subject to $||Ax - b||_2 \leq \sigma$

Can we do better?

Inverting for unknown data 1.0 (naive method: explicit reconstruction)

Robust EPSI Inverting for unknown data

While $\|\mathbf{p}_k - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$ determine new τ_k from the Pareto curve $\mathbf{g}_{k+1} = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p}_k - \mathbf{M}_{q_k}\mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \leq \tau_k$ $\mathbf{q}_{k+1} = \underset{\mathbf{Q}}{\operatorname{arg\,min}} \|\mathbf{p}_k - \mathbf{M}_{g_{k+1}}\mathbf{q}\|_2$ $\mathbf{p}_{k+1} = \mathbf{p}_k + \alpha \Delta \mathbf{p}(\mathbf{g}_{k+1}, \mathbf{q}_{k+1}, \mathbf{p}_k)$

$\Delta \mathbf{P}(\mathbf{G}_{k+1},\mathbf{R}_{k+1}) := -(\mathbf{I} + \mathbf{G}_{k+1})^H(\mathbf{R}_{k+1})$

Robust EPSI Inverting for unknown data 1.0

Data changes every iteration!

While
$$\|\mathbf{p}_k - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 >$$

determine new τ_k from the Pareto curve

$$\mathbf{g}_{k+1} = \underset{\mathbf{g}}{\arg\min} \|\mathbf{p}_k - \mathbf{g}\|$$

$$\mathbf{q}_{k+1} = \arg\min_{\mathbf{q}} \|\mathbf{p}_k - \mathbf{q}\|$$

 $\mathbf{p}_{k+1} = \mathbf{p}_k + \alpha \Delta \mathbf{p}(\mathbf{g}_{k+1}, \mathbf{q}_{k+1}, \mathbf{p}_k)$

$\Delta \mathbf{P}(\mathbf{G}_{k+1},\mathbf{R}_{k+1}) := -(\mathbf{I} + \mathbf{G}_{k+1})^H(\mathbf{R}_{k+1})$

- > *o*
- $\mathbf{M}_{q_k} \mathbf{g} \|_2$ s.t. $\| \mathbf{g} \|_1 \le \tau_k$
- $\mathbf{M}_{g_{k+1}}\mathbf{q}\|_2$

Robust EPSI Inverting for unknown data 1.0

Data changes every iteration!

While
$$\|\mathbf{p}_k - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 >$$

determine new τ_k from the Pareto curve

$$\begin{aligned} \mathbf{g}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{g}} \|\mathbf{p}_k - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \leq \tau_k \\ \mathbf{q}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{q}} \|\mathbf{p}_k - \mathbf{M}_{g_{k+1}} \mathbf{q}\|_2 \quad \text{ G and P upd} \\ \mathbf{p}_{k+1} &= \mathbf{p}_k + \alpha \Delta \mathbf{p}(\mathbf{g}_{k+1}, \mathbf{q}_{k+1}, \mathbf{p}_k) \end{aligned}$$

$\Delta \mathbf{P}(\mathbf{G}_{k+1}, \mathbf{R}_{k+1}) := -(\mathbf{I} + \mathbf{G}_{k+1})^H (\mathbf{R}_{k+1})$

- > *o*

lated independently

Inverting for unknown data 2.0

No changing observations
Relate changes in P to changes in G

		0
Traco Madel		0.2 -
IIUCE MUSK		0.4-
		0.6-
Masking operator \mathbf{K}		0.8-
		1 -
		1.2-
		1.4-
	(s)	1.6-
•	IMe	1.8-
ł	_	2 -
		2.2 -
		2.4-
		2.6-
		2.8-
		3 -
		3.2 -
		3.4-

Trace Mack		0 0
		0.4-
		0.6-
		0.8-
Bisects wavefield data to unknown/		1 -
uncertain traces		1.2-
		1.4 -
(e.g., near-offset)) er	1.8 -
	Tin	2 -
		2.2 -
		2.4 -
		2.6-
		2.8-
		3 -
		3.2 -
		3.4 -

		0
Trace Mask		0.2 -
IIUCE MUSK		0.4 -
		0.6-
Macking operator K		0.8-
		1 -
		1.2 -
Time domain: \mathbf{Kp}		1.4 -
	(s)	1.6-
Frequency slices: $\mathbf{K} \circ \mathbf{P}$	ы Де	1.8-
	Ē	2 -
		2.2 -
		2.4 -
		2.6 -
		2.8 -
		3 -
		3.2 -
		3.4 -

	0 0 -'
Trace Mask	0.2-
	0.4-
	0.6-
Complement of \mathbf{K}	0.8-
Masking operator $\square \square C$	1 -
	1.2-
Time domain: $\mathbf{K}_{c}\mathbf{p}$	1.4-
	<u>n</u> 1.6 -
Frequency slices: $\mathbf{K}_c \circ \mathbf{P}$	<u>*</u> 1.8-
F	- 2 -
	2.2-
	2.4-
	2.6-
	2.8-
	3 -
	3.2-
	3.4-

Bisected data variables $\mathbf{P}' + \mathbf{P}'' = \mathbf{P}$

Known data traces: $\mathbf{P}' := \mathbf{K} \circ \mathbf{P}$

Unknown data traces: $\mathbf{P}'' := \mathbf{K_c} \circ \mathbf{P}$

Bisected data variables $\mathbf{P}' + \mathbf{P}'' = \mathbf{P}$

Known data traces: $\mathbf{P}' := \mathbf{K} \circ \mathbf{P}$

Unknown data traces: $\mathbf{P}'' := \mathbf{K_c} \circ \mathbf{P}$ = $\mathbf{K_c} \circ (\mathbf{GQ} + \mathbf{RGP}' + \mathbf{RGP}'')$

Bisected data variables P' + P'' = P

Known data traces: $\mathbf{P}' := \mathbf{K} \circ \mathbf{P}$ Unknown data traces: $\mathbf{P}'' := \mathbf{K}_{\mathbf{c}} \diamond \mathbf{P}$

Trace stencil

 $= \mathbf{K_c} \circ \left(\mathbf{GQ} + \mathbf{RGP'} + \mathbf{RGP''} \right)$

Bisected data variables P' + P'' = P

$\mathcal{M}(\mathbf{G}, \mathbf{Q}; \mathbf{P}') = \mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' + \mathbf{R}\mathbf{G}\mathbf{P}''$

$\mathcal{M}(\mathbf{G},\mathbf{Q};\mathbf{P}') = \mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' + \mathbf{R}\mathbf{G}\mathbf{P}''$

$$\begin{split} \text{Tilde: modified with} & \widetilde{\mathcal{M}}(\mathbf{G},\mathbf{Q};\mathbf{P}') = \mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' \\ & + \mathbf{R}\mathbf{G}\mathbf{K}_{\mathbf{c}} \circ (\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}') \\ & + \mathcal{O}(\mathbf{G}^3) \end{split}$$

Tuesday, December 9, 14

$$\begin{split} \widetilde{\mathcal{M}}(\mathbf{G},\mathbf{Q};\mathbf{P}') = & \mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' \\ & + \mathbf{R}\mathbf{G}\mathbf{K_c} \circ (\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}') \\ & + \mathcal{O}(\mathbf{G}^3) \end{split}$$

$$\begin{split} \widetilde{\mathcal{M}}(\mathbf{G},\mathbf{Q};\mathbf{P}') = & \mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' \\ & + \mathbf{R}\mathbf{G}\mathbf{K}_{\mathbf{c}} \circ \mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}') \\ & + \mathcal{O}(\mathbf{G}^3) \end{split}$$

$$\begin{split} \widetilde{\mathcal{M}}(\mathbf{G},\mathbf{Q};\mathbf{P}') = &\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' \\ \text{2nd Order autoconvolution term} \longrightarrow &+ \mathbf{R}\mathbf{G}\mathbf{K}_{\mathbf{c}} \circ (\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}') \\ & \text{(of G)} &+ \mathcal{O}(\mathbf{G}^3) \end{split}$$

Trace mask over all modeled wavefield

$$\widetilde{\mathcal{M}}(\mathbf{G}, \mathbf{Q}; \mathbf{P}') = \mathbf{K} \circ [\mathbf{G}\mathbf{Q} + \mathbf{C}]$$
2nd Order autoconvolution term + $\mathbf{R}\mathbf{G}\mathbf{K}_{\mathbf{G}}$
+ $\mathcal{O}(\mathbf{G}^3)$

 $+ \mathbf{RGP'}_{c} \circ (\mathbf{GQ} + \mathbf{RGP'})$

$\mathcal{M}(\mathbf{G},\mathbf{Q};\mathbf{P}') = \mathbf{K} \circ [\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}']$ 2nd Order autoconvolution term $+ \operatorname{RGK}_{c} \circ (\operatorname{GQ} + \operatorname{RGP}')$ $\ \ \, \text{3rd Order autoconvolution term} \ + \ \mathbf{RGK_c} \circ (\mathbf{RGK_c} \circ (\mathbf{GQ} + \mathbf{RGP'}))$ $+ \mathcal{O}(\mathbf{G}^4)$ ∞

$$:= \mathbf{K} \circ \sum_{n=0}^{\infty} (\mathbf{F}$$

 $\mathbf{RGK_c} \circ)^n (\mathbf{GQ} + \mathbf{RGP'}).$

What these terms look like

Main Result

account for missing traces

Just one or two of these terms is enough to

$\mathcal{M}(\mathbf{G},\mathbf{Q};\mathbf{P}') = \mathbf{K} \circ [\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}']$ 2nd Order autoconvolution term $+ \operatorname{RGK}_{c} \circ (\operatorname{GQ} + \operatorname{RGP}')$ $\ \ \, \text{3rd Order autoconvolution term} \ + \ \mathbf{RGK_c} \circ (\mathbf{RGK_c} \circ (\mathbf{GQ} + \mathbf{RGP'}))$ $+ \mathcal{O}(\mathbf{G}^4)$ ∞

$$:= \mathbf{K} \circ \sum_{n=0}^{\infty} (\mathbf{F})$$

 $\mathbf{RGK_c} \circ)^n (\mathbf{GQ} + \mathbf{RGP'}).$

Convergent sum

$$\mathbf{K} \circ \mathbf{P} = \mathbf{K} \circ \sum_{n=0}^{\infty} \left(\mathbf{R} \mathbf{G} \mathbf{K}_{\mathbf{c}} \circ \right)^n \left(\mathbf{G} \right)^n$$

 $= \mathbf{K} \circ \left(\mathbf{I} - \mathbf{R}\mathbf{G}\mathbf{K}_{\mathbf{c}} \circ \right)^{-1} \left(\mathbf{G}\mathbf{Q} + \mathbf{R}\mathbf{G}\mathbf{P}' \right)$

$\mathbf{Q} + \mathbf{RGP'}$

Convergent sum

$$\mathbf{K} \circ \mathbf{P} = \mathbf{K} \circ \sum_{n=0}^{\infty} \left(\mathbf{R} \mathbf{G} \mathbf{K}_{\mathbf{c}} \circ \right)^{n} \left(\mathbf{G} \right)$$
$$= \mathbf{K} \circ \left(\mathbf{I} - \mathbf{R} \mathbf{G} \mathbf{K}_{\mathbf{c}} \circ \right)^{-1} \left(\mathbf{G} \right)$$

$\mathbf{Q} + \mathbf{RGP'}$

$\mathbf{GQ} + \mathbf{RGP'}$

Verifies the validity of the expression

Solution strategy

Robust EPSI Inverting for unknown data 1.0

While $\|\mathbf{p}_k - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$ determine new τ_k from the Pareto curve $\mathbf{g}_{k+1} = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p}_k - \mathbf{M}_{q_k}\mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \leq \tau_k$ $\mathbf{q}_{k+1} = \underset{\mathbf{Q}}{\operatorname{arg\,min}} \|\mathbf{p}_k - \mathbf{M}_{g_{k+1}}\mathbf{q}\|_2$ $\mathbf{p}_{k+1} = \mathbf{p}_k + \alpha \Delta \mathbf{p}(\mathbf{g}_{k+1}, \mathbf{q}_{k+1}, \mathbf{p}_k)$

$\Delta \mathbf{P}(\mathbf{G}_{k+1},\mathbf{R}_{k+1}) := -(\mathbf{I} + \mathbf{G}_{k+1})^H(\mathbf{R}_{k+1})$

Autoconvolving Robust EPSI Accounting for unknown data with G

While
$$\|\mathbf{p} - \widetilde{\mathcal{M}}(\mathbf{g}_k, \mathbf{q}_k)\|_2 >$$

determine new τ_k from the Pareto curve

$$\begin{aligned} \mathbf{g}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{g}} \|\mathbf{p} - \widehat{\lambda} \\ \mathbf{q}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{q}} \|\mathbf{p} - \widehat{\lambda} \end{aligned}$$

 σ

n the Pareto curve $\widetilde{\mathcal{M}}(\mathbf{g},\mathbf{q_k})\|_2$ s.t. $\|\mathbf{g}\|_1 \leq au_k$ $\widetilde{\mathbf{M}}_{g_{k+1}}\mathbf{q}\|_2$

Strategy 1: Re-linearization Using G from previous iter in higher-order terms

While
$$\|\mathbf{p} - \widetilde{\mathcal{M}}(\mathbf{g}_k, \mathbf{q}_k)\|_2 >$$

determine new τ_k from the Pareto curve

$$\mathbf{g}_{k+1} = \operatorname*{arg\,min}_{\mathbf{g}} \|\mathbf{p} - \widehat{\mathbf{N}}\|$$

$$\mathbf{q}_{k+1} = rgmin \|\mathbf{p} - \mathbf{N}\|$$

σ

m the Pareto curve $\widetilde{\mathbf{M}}_{q_k} \mathbf{g} \|_2 \text{ s.t. } \|\mathbf{g}\|_1 \leq \tau_k$ fix at \mathbf{g}_k for autoconv terms $\widetilde{\mathbf{M}}_{g_{k+1}} \mathbf{q} \|_2$

Strategy 2: Modified Gauss-Newton Obtain Jacobian using G from previous iter

While $\|\mathbf{p} - \widetilde{\mathcal{M}}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$

determine new τ_k from the Pareto curve

 $\mathbf{g}_{k+1} = \mathbf{g}_k + \operatorname*{arg\,min}_{\Delta \mathbf{g}} \|\mathbf{r}\|_{\Delta \mathbf{g}}$

 $\mathbf{q}_{k+1} = \underset{\mathbf{q}}{\operatorname{arg\,min}} \|\mathbf{p} - \widetilde{\mathbf{M}}_{g_{k+1}}\mathbf{q}\|_2$

$$\mathbf{f}_{k} - \partial_{(g_{k},q_{k})} \widetilde{\mathcal{M}} \Delta \mathbf{g} \|_{2} \text{ s.t. } \|\Delta \mathbf{g}\|_{1} \leq au_{k}$$

 $\widetilde{\mathbf{f}}_{g_{k+1}} \mathbf{q} \|_{2}$

Compare with explicit updating of P

68

150m near-offset 2km max offset

0.2 -0.4 0.6 Time (s) 0.8 1.4 -0.5 1.5 0 2 Position (km)

Autoconvolving upto 3rd-order (GN)

Field data example North Sea dataset

Data

North Sea dataset 100m near-offset regularized to 12.5m dx and 4km fixed-spread from streamer 4ms sampling

Shot

Conservative primary

NMO stack Parabolic Radon Interp

Multiple

Conservative primary

NMO stack **Re-linearization** Using 3rd Order terms

Multiple

Difference from Radon interp.

NMO stack **Re-linearization** Using 3rd Order terms

Multiple

Conservative primary

NMO stack **Re-linearization** Using 2nd Order terms

Multiple

Radon interp - Re-linearization 2nd order

Re-linearization 3rd - 2nd order

75

NMO stack Difference plots

Conservative primary

Multiple

NMO stack Modified Gauss-Newton Using 3rd Order terms

Diff: GN vs Relinearize

CMP position (km) CMP position (km) 2 2 0-0.5-Time (s) 1.0-1.5

GN 3rd Order Multiple

Re-lin. 3rd Order Multiple

Diff: GN vs Relinearize

Diff: Radon interp vs Relinearize

Re-lin. 3rd Order Multiple

Summary for Autoconvolving REPSI

Able to obtain an approximate forward operator with incomplete data without dependence on the missing traces

Inversion should be more stable by not changing the data at each iteration

Regularization on **G** is automatically reflected in the model for the missing traces

Bonus: Multi-scale EPSI for acceleration, and its relationship to deconvolution

EPSI as a convolutional model

EPSI Model Up-going Primary + Multiples = $\mathbf{GQ} + \mathbf{GP}$ additional info on G

- P total up-going wavefield
- **Q** down-going source signature
- G primary impulse response

Robust EPSI L1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 *Geophysics*]

While
$$\|\mathbf{p} - \mathcal{M}(\mathbf{g}_k, \mathbf{q}_k)\|_2 > \sigma$$

determine new τ_k from the Pareto curve
 $\mathbf{g}_{k+1} = \operatorname*{arg\,min}_{\mathbf{g}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2$ s.t. $\|\mathbf{g}\|_1 \le \tau_k$
ution

Emits sparse, o "deconvolved" solu

 $\mathbf{q}_{k+1} = \operatorname*{arg\,min}_{\mathbf{q}} \|\mathbf{p}\|$

$$\mathbf{p} - \mathbf{M}_{g_{k+1}} \mathbf{q} \|_2$$

L1 projection and sparsity

variable g at beginning of LASSO $\mathbf{g}_{k+1} = \arg\min \|\mathbf{p} - \mathbf{M}_{q_k}\mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \le \tau_k$ **g**

L1 projection and sparsity

variable g at end of LASSO

$\mathbf{g}_{k+1} = \operatorname*{arg\,min}_{\mathbf{g}} \|\mathbf{p} - \mathbf{M}_{q_k} \mathbf{g}\|_2 \text{ s.t. } \|\mathbf{g}\|_1 \leq \tau_k$

Emits "deconvolved" solution

Data modeled with Ricker 30Hz

Reference REPSI primary IR from original data

Lowpassed Data modeled with Ricker 30Hz lowpass at 40Hz (25-order, zero-phase, Hann window)

REPSI primary IR from low-passed data @ 40Hz

Reference REPSI primary IR from original data

90

Zero–offset trace, 1140m

Lowpass data permits coarser sampling w/o aliasing

2x decimated

4x decimated lowpass 15Hz

Lowpass data permits coarser sampling w/o aliasing

Impulse response solutions

Lowpass data permits coarser sampling w/o aliasing (much faster!)

40 min

6 min

1.5 min

Lowpass data permits coarser sampling w/o aliasing

Multilevel strategy for EPSI

warm-start fine-scale problem (slow) with coarse-scale solutions (fast)

Significant speedup from bootstrapping (in 2D)

$$\begin{aligned} \mathsf{Cost}(n) &= \mathcal{O}(2n_t n^2 \log n_t) + \mathcal{O}(n_f n^3) \\ & \mathbf{2} \operatorname{times FFT} & \operatorname{computing MCG \& sum in FX} \end{aligned}$$

$$\operatorname{Cost}\left(\frac{1}{2}n\right) = \frac{1}{4}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{8}\mathcal{O}(n_f n^3)$$
$$\operatorname{Cost}\left(\frac{1}{4}n\right) = \frac{1}{16}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{64}\mathcal{O}(n_f n^3)$$

Per-iteration FLOPs cost (one forward/adjoint): $n = n_{rcv} = n_{src}$

Significant speedup from bootstrapping (in 2D)

$$\begin{aligned} \mathsf{Cost}(n) &= \mathcal{O}(2n_t n^2 \log n_t) + \mathcal{O}(n_f n^3) \\ & \mathbf{2} \operatorname{times} \mathsf{FFT} & \operatorname{computing} \mathsf{MCG} \, \mathbf{\&} \, \mathsf{sum} \end{aligned}$$

$$\mathsf{Cost}\left(\frac{1}{2}n, \frac{1}{2}n_f\right) = \frac{1}{4}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{16}\mathcal{O}(n_f n^3)$$
$$\mathsf{Cost}\left(\frac{1}{4}n, \frac{1}{4}n_f\right) = \frac{1}{16}\mathcal{O}(2n_t n^2 \log n_t) + \frac{1}{128}\mathcal{O}(n_f n^3)$$

Per-iteration FLOPs cost (one forward/adjoint): $n = n_{rcv} = n_{src}$

in FX

Solution of full data

98

Solution of 4x decimated data

Solution of full data

99

Solution of 4x decimated data 1600m/s NMO, linear interp 2x

Solution of 2x decimated data

Solution of 4x decimated data 1600m/s NMO, linear interp 2x

Solution of 2x decimated data

101

Solution on 2x dec data *continuation* from 4x dec solution

Solution of full data

Solution on 2x dec data *continuation* from 4x dec solution

Solution of full data

Tuesday, December 9, 14

Solution on 2x dec data > interp 2x continuation from 4x dec solution

Solution of full data

Solution on 2x dec data > interp 2x *continuation* from 4x thru 2x solution

Solve

Direct Primary

Solved with plain algorithm from finest scale data

106

Direct Primary

Solved with spatial sampling continuation dx = 60m > 30m > 15m

Predicted Surface Multiple

Solved with plain algorithm from finest scale data

Predicted Surface Multiple

Solved with spatial sampling continuation dx = 60m > 30m > 15m

Shot gather

NMO-corrected stack

North sea data

Shot gather and stack

Streamer data (regularized to fixedspread data) 401 source and reciever 12.5 m spatial grid 4 ms time sampling

Solution wavefield comparison

110

Direct Primary

Solved with plain algorithm from finest scale data

Solution wavefield comparison

111

5

Direct Primary

Solved with spatial sampling continuation dx = 50m > 25m > 12.5m

Solution multiple comparison

112

Predicted Surface Multiple

Solved with plain algorithm from finest scale data

Solution multiple comparison

113

Predicted Surface Multiple

Solved with spatial sampling continuation dx = 50m > 25m > 12.5m

Solution stack comparison

REPSI Primaries NMO Stack

Solved with plain algorithm from finest scale data

CMP position (km) 0. 0.5-1.0-1.5 The see at the second 2.0

Solution stack comparison

REPSI Primaries NMO Stack

Solved with spatial sampling continuation dx = 50m > 25m > 12.5m

CMP position (km) 0. 0.5-1.0-1.5 The second started and 2.0

Time (s)

CMP position (km) 0 2 0-0.5-1.0-1.5-CONTRACTOR AND AND A CONTRACTOR CARL CARE CONSIDER THE TAXABLE CONSTRAINTS 2.0-"W" these

From full data

Bootstrapping from 4x decimated

117

Tuesday, December 9, 14

From full data

Bootstrapping from 4x decimated

From full data

Bootstrapping from 4x decimated

From full data

Bootstrapping from 4x decimated

120

From full data

Bootstrapping from 4x decimated

From full data

Bootstrapping from 4x decimated

122

Lowpass data permits coarser sampling w/o aliasing

123

Errors in support estimation due to more difficult Time (s)

EPSI as a convolutional model

EPSI Model Up-going Primary + Multiples = $\mathbf{GQ} + \mathbf{GP}$ additional info on G

- P total up-going wavefield
- Q down-going source signature
- G primary impulse response

Tuesday, December 9, 14

Yes, we are working on that...

Tuesday, December 9, 14

on that... (Ernie's talk, next)

