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First half

Extreme SRME -> EPSI

Surface-related multiple removal as a deconvolution problem
e Get explicitly the source wavelet Q
e and a (discrete) Green’s function for the primary wavefield G

Tim Improving model for G: deal with data gaps
Ernie Improving model for Q: better deconvolution




Second half

EPSI’'s model (separating G and Q) is very helpful for imaging
e multiples naturally translate to injecting data into source term
¢ helps with scaling ambiguity in inversion imaging
e improves azimuthal range of (extended) image gathers

Ning Incorporating into a fast inversion imaging scheme
Kumar Computing extended image gathers with this model
Ning How the EPSI model helps with source scaling
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Talk outline

Brief review of EPSI and Robust EPSI

1. Modifying EPSI prediction model to account for missing data™
2. Algorithmic implications for Robust EPSI

Bonus: Multi-scale EPSI for acceleration and deconvolution (Ernie)

*missing data in aperture gaps, not undersampling




EPSI model of surface multiples

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

P=QG —GP

P  total up-going wavefield
Q down-going source signature

e primary impulse response
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

true primary wavefield SRME-produced primary

P, =P — A(f)P,P

P total up-going wavefield
P, primary wavefield
A(f) “matching” operator
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

true primary wavefield SRME-produced primary
Po~P — A(f @
SRMP

P total up-going wavefield
P, primary wavefield
A(f) “matching” operator
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

adaptive min Z HP — A(f‘

subtraction A

P total up-going wavefield
P, primary wavefield
A(f) “matching” operator
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

true primary wavefield SRME-produced primary

P, =P — A(f)P,P

P total up-going wavefield
P, primary wavefield
A(f) “matching” operator
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

P = P,+A(f)P,P

P total up-going wavefield
P, primary wavefield
A( f ) “matching” operator
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

P = P,+A(f)P,P

P, = QG
A(f)=-Q"

P  total up-going wavefield
Q down-going source signature

e primary impulse response
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

P=QG —GP

P  total up-going wavefield
Q down-going source signature

e primary impulse response
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

recorded data predicted data from SRME

P=QG —GP

Do Inversion for G and Q by minimizing:

1
f(G,Q) = ;P — (QG — GP)|
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From SRME 1o Robust EPSI

Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

-ded.dat: predicted data from SRME

@ QG — GP

1.4 . - - - - 1
0 500 1000 1500 2000 f(G, Q) — §HP — (QG — GP)H%

Position (m)
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (v

recorded data predijcted data from SRME

P = GP

Inversion objective:

0 500 1000 1500 2000
Position (m)
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (v

recorded data predicted data from SRME
P QG- GP

Inversion objective: ;.

0 500 1000 1500 2000
Position (m)
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (vi °

0.2 1

recorded data predicted data from SRME ¢ 4-

Inversion objective:

) 0 500 1000 1500 2000
Position (m)
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From SRME 1o Robust EPSI

Based on Estimation of Primaries by Sparse Inversion (v

recorded data predicted data from SRME

Inversion objective:

500 1000 1500 2000
Position (m)
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So what happens...

when there are gaps In your aperturee
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Even assuming we already
From SRME fo RObUS'I' EPSI have the perfect G...

Based on Estimation of Primaries by Sparse Inversion (vi ° | | | — 1)9)

recorded data predijcted data from SRME

P = GP

Inversion objective: i

0 500 1000 1500 2000
Position (m)
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0 0.5 1 1.5 2
Position (km)

Data with missing traces P’

22

Time (s)

0.5 1 1.5
Position (km)

Exact multiples

2

Time (s)

0 0.5 1 1.5
Position (km)

EPSI Predicted -GP’
(with perfect G)

2
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Time (s)

23

0.5 1 1.5 2
Position (km)

Missing contributions

Time (s)

0 0.5 1 1.5 2 | 0 0.5 1 1.5
Position (km) Position (km)
EPSI Predicted -GP’

Exact multiples (with perfect G)

2
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Main idea

Modity the relationship
P = QG — GP

fo account for the missing contribufion
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A brief discussion of the inversion

recorded data predicted data from SRME

P=QG —GP

Inversion objective:

1
f(G,Q) = ;P — (QG — GP)|
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Write the EPSI data prediction as an operator M

In time domain (lower-case: whole dataset in time domain)

recorded data predicted data from SRME
p =M (g ’ Q)

M(g. q) := F,BlockDiag,,, ., [(¢(w)I-P) @I Fg

Inversion objective:

1
f(gv Q) — §HP_M(g9 Q)H%
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Solving the EPSI problem

Linearizations

Infactitis bilinear: QG = P + GP

M;g = M(g,q)

esday, December
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M(q,g)




Solving the EPSI problem

Linearizations

p =M(g,q)
0
M- (T )
og i
0
M= (Ga)
oq / ;
Associated objectives:
1 1
fi(g) = 5llp - M;gll3 f3(a) = 5lip - M;ql|3




Solving the EPSI problem

Do:

gri1 = 8 +aS(Vfy (8r))
qk—l—l — (i T /vigk+1 (qk)

Gradient sparsity

S : pick largest p elements per trace
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Robust EPSI

L 1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 Geophysics]

While |[p — M(g,q)||2 >0

determine new 7. from the Pareto curve

Sk

qz

Tuesday, December 9, 14

| = arggmin P — Mg, gl2s.t gl < 7

1 = argmin Ip— My, qll:




Choosing Tau from the Pareto curve

minimize  ||x||;
subject to  ||Az —b|ls < o

Look at the solution space and the line of optimal solutions (Pareto curve)

T minimize  ||Ax — b||5

| solving LASSO
via projected gradient sy b_ject to le < T

Y

Q. Skl

Tk Tk+1

feasible solution with smallest H,CE H 1

31
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Can we do better?

Inverting for unknown data 1.0
(haive method: explicit reconstruction)
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Robust EPSI
INnverting for unknown data

While [Py — M(8, di)ll2 >0
determine new 7 from the Pareto curve

Sk+1 = arggmin HPk — qug‘|2 S.T. HgH1 < Tk

Ajpr1 = argénin P, — My, .. ql2

pk—l—l — Pg -+ aAp(gk:—l—h qk—|—17 pk)
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Robust EPSI
INnverting for unknown data 1.0

Data changes every iteration! AP(Gk+1, Rk+1) c = _(I + Gk+1)H(Rk+1)

While |[|py [~ M(8k, di)ll2 > 0
determine new 7 from the Pareto curve

Sk+1 = arggmin HPk — qug‘|2 S.T. HgH1 < Tk

Ajpr1 = argénin P, — My, .. ql2

pk—|—1 — Pg -+ aAp(gk—l—h qk—|—17 pk)
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Robust EPSI
INnverting for unknown data 1.0

Data changes every iteration! AP (Gk;—|—1 , Rk+1) =

While | [Py [~ M(gy, ar)ll2 > 0

determine new 7 from the Pareto curve
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INnverting for unknown data 2.0

. No changing observations
2. Relate changes in P to changes in G
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Trace Mask

Masking operator K

Time (s)

1000

hydrophone location (m)
2000 3000 4000

5000

6000
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Trace Mask

Bisects wavefield data to unknown/
uncertain traces

(e.g., near-offset)

Time (s)

1000

hydrophone location (m)
2000 3000 4000

5000

6000
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Trace Mask

Masking operator KK

Time domain: Kp
Frequency slices: K o P

39

Time (s)

1000

hydrophone location (m)
2000 3000 4000

5000

6000
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hydrophone location (m)

0 C|) 10|OO 20|OO 30|OO 40|OO 50|OO 60|OO
0.2 -
Trace Mask o
0.6 -
Complement of K 0.8 -
Masking operator c 1-

1.2-
1.4-

Time domain: K_.p

1.6 -

Frequency slices: K. o P 8.

2.2 -
2.4 -
2.6 -
2.8 -

3.2 -

Time (s)
T N Ty T

3.4 -

40
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Bisected data variables P’ - P/ =P

Known datatraces: P (=Ko P

Unknown data traces: P” :=K_.o P
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Bisected data variables P’ - P/ =P

Known datatraces: P (=Ko P

Unknown data traces: P” :=K_.o P
— K. o (GQ + RGP’ + RGP")
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Bisected data variables P’ - P/ =P

Known datatraces: P (=Ko P

Trace stencil

Unknown data traces: P’ : » P
— K.o (GQ + RGP’ + RGP")
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Bisected data variables P’ - P/ =P

Known datatraces: P (=Ko P

Trace stencil

Unknown data tracesﬂ

! (6o nar  nde)

Recursively defined

esday, December 9




Modify the modeling operator

M(G,Q;P") =GQ + RGP’
RGP’
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Modify the modeling operator

M(G,Q;P)=GQ + RGP’

Tilde: modified with —
higher-order terms ./\/l(G, Q§ P/) :GQ RGP’

+ RGK. o (GQ + RGP’)

+ O(G?)
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Modify the modeling operator

M(G,Q;P') =GQ + RGP’
RGK. o (GQ + RGP
+ O(G?)

eeeeeeeeeeeeeeeeeeee



Modify the modeling operator

M(G,Q; P :GQ RGP’

.o (G + HGP)

+OG3
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Modify the modeling operator

M(G,Q;P') =GQ + RGP’
2nd Order autoconvolution term —» + RGK¢ o (GQ + RGP’)
oo +O(G?)
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Modify the modeling operator

Trace mask over all modeled wavefield

M(G,Q;P) ‘GQ + RGP

2nd Order autoconvolution term RGK. o (GQ + RGP')
+ O(GY)]
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Modify the modeling operator

M(G,Q;P') =K o [GQ + RGP’
2nd Order autoconvolutionterm + RGK. o (GQ + RGP’)
3rd Order autoconvolution term RGK, o (RGK. o (GQ + RGP"))
+ O(GY)]

=Ko » (RGKco)"(GQ+ RGP).

n=0

esday, December 9




What these terms look like
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0 0.5 1 1.5 2
Position (km)

Data with missing traces P’

53

Time (s)

0.5 1 1.5
Position (km)

Exact multiples

2

Time (s)

0 0.5 1 1.5
Position (km)

EPSI Predicted -GP’
(with perfect G)

2
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Time (s)

54

0.5 1 1.5 2
Position (km)

Missing contributions

Time (s)

0 0.5 1 1.5 2 | 0 0.5 1 1.5
Position (km) Position (km)
EPSI Predicted -GP’

Exact multiples (with perfect G)

2
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() ) )
£ £ £
— = —
0 0.5 1 1.5 2 | 0 0.5 1 1.5 2 | 0 0.5 1 1.5 2
Position (km) Position (km) Position (km)
Missing contributions 2nd order term 3rd order term
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Time (s)
Time (s)

0 0.5 1 1.5 2 | 0 0.5 1 1.5 2
Position (km) Position (km)
Missing contributions 2nd order term + 3rd order

56
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Total missing contrib.

Time (s)

0.5

1 1.5
Position (km)

2
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Modeled with two terms

Tuesday, December 9, 14

Time (s)

0.5

1 1.5
Position (km)

2




Main Result

Just one or two of these terms Is enough 1o
account for missing traces
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Modify the modeling operator

M(G,Q;P') =K o [GQ + RGP’
2nd Order autoconvolutionterm + RGK. o (GQ + RGP’)
3rd Order autoconvolution term RGK, o (RGK. o (GQ + RGP"))
+ O(GY)]

=Ko » (RGKco)"(GQ+ RGP).

n=0
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Convergent sum

KoP =Ko ) (RGK.)" (GQ+RGP’)

n=0

— Ko (I-RGK.0) ' (GQ + RGP
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Convergent sum

KoP =Ko ) (RGK.)" (GQ+RGP’)
n=0
— Ko (I-RGK.0) ' (GQ + RGP

Verifies the validity of the expression
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Solution strategy
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Robust EPSI
INnverting for unknown data 1.0

While [Py — M(8, di)ll2 >0
determine new 7 from the Pareto curve

Sk+1 = arggmin HPk — qug‘|2 S.T. HgH1 < Tk

Ajpr1 = argénin P, — My, .. ql2

pk—l—l — Pg -+ aAp(gk:—l—h qk—|—17 pk)

esday, December 9, 14




Autoconvolving Robust EPSI |
Accounting for unknown data with G

While ||p — M(g.q)|2 >0

determine new 7 from the Pareto curve

Cpil = arggmin P — M(g,ak)|l2 s-t. ||gllh < 7%

arg(:;nin HP — M9k+1 qH2

Ar11

Tuesday, December




Strategy 1: Re-linearization
Using G from previous iter in higher-order terms

While ||p — M(g.q)|2 >0

determine new 7 from the Pareto curve

P

g1 = argmin ||p | Mg,

> s.t. [|gllr < 7

5 — fix at gk for autoconv terms
U+1 = argminf|p =M, qfl

Tuesday, December 9, 14




Strategy 2: Modified Gauss-Newton
Obtain Jacobian using G from previous iter

While ||p — M(g.q)|2 >0

determine new 7 from the Pareto curve

81 = ) + a,rgAIélin Ty — 0(gk,qk)./\/lAgH2 s.t. ||Agll1 < 7%
Api1 = arg(;nin Ip— My, .42
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. o ) 150m near-offset
Compare with explicit updafing of P 2km max offset

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

Position (km) Position (km) Position (km)
Data with missing near-offset Explicit data updates Autoconvolving upto 2rd-order (GN)

68
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Field data example
North Sea dataset
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Time (s)

/0

CMP position (km)

North Sea dataset

100m near-offset

regularized to 12.5m dx
and 4km fixed-spread
from streamer

4dms sampling
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CMP position (km) CMP position (km)
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CMP position (km) CMP position (km)
0 2 4 0 2 4

Time ()
Time ()

NMO stack

Re-linearization
Using 3rd Order terms

- ,“‘u-"-' JlF S g
- g o e
.r_':.l— R il . _,-l'..-.l‘.r

L " " il - 3 :
v -PMW ; ly‘""lfﬂ' ol .

e

—
a1

- i
ol g

;
P e

e i wal
— e

L (SRR e .

[ SR ' o
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72

Tuesday, December 9, 14



CMP position (km) CMP position (km)

NMO stack

Re-linearization
Using 3rd Order terms

Difference from Radon interp. Multiple

/3
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CMP position (km) CMP position (km)
0 2 4

P g -
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£ NMO stack
Re-linearization
Using 2nd Order terms

Conservative primary Multiple
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CMP position (km) CMP position (km)
0 2 4

NMO stack

Difference plots

Radon interp - Re-linearization 2nd

Re-linearization 3rd - 2nd order
order
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CMP position (km) CMP position (km)
0 2 4
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NMO stack
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Using 3rd Order terms
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CMP position (km) CMP position (km) CMP position (km)
2 2 2

. g

——
. e {J'LJJ#'M.MMI'& --I'" L

Diff: GN vs Relinearize GN 3rd Order Multiple Re-lin. 3rd Order Multiple
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CMP position (km) CMP position (km) CMP position (km)
2 2

Diff: GN vs Relinearize Diff: Radon interp vs Relinearize Re-lin. 3rd Order Multiple

/8
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Summary for Autoconvolving REPSI

Able to obtain an approximate forward operator with incomplete
data without dependence on the missing traces

Inversion should be more stable by not changing the data at each
iteration

Regularization on G is automatically reflected in the model for the
missing traces
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Bonus: Multl-scale EPSI for acceleration, and
Its relationship to deconvolution
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EPSI as a convolutional model

Traditional convolution model

Up-going Primary = GQ

EPSI Model

Up-going Primary + Multiples = GQ

additional infoon G
P total up-going wavefield
Q down-going source signature

(& primary impulse response
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Robust EPSI
L 1-minimization approach to the EPSI problem

[Lin and Herrmann, 2013 Geophysics]

While |[p — M(g,q)||2 >0

determine new 7. from the Pareto curve

Emits sparse, or
“deconvolved” solution

A1 = arg(;nin p— My, ql?

esday, December 9, 14




L1 projection and sparsity

0.25

variable g at beginning of
LASSO

g1 = argmin ||p — Mg, g|l2 s.t. ||g||1 < 7%

g 0.5

time (s)

0.75

33 20 40 60 80 100 120 140
trace number
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L1 projection and sparsity

0.25

variable g at end of LASSO

g1 = argmin ||p — Mg, g|l2 s.t. ||g||1 < 7%

g 0.5

time (s)

Emits “deconvolved”
solution

0.75

34 20 40 60 80 100 120 140
trace number
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Motivation: G tolerates lowpass filtering

O I

Tuesday, December 9, 14

500

1000 1500
Position (m)

2000

Data
modeled with Ricker 30Hz




Motivation: G tolerates lowpass filtering

04
Reference REPSI primary IR
from original dato

0 500 1000 1500 2000
Position (m)




Motivation: G tolerates lowpass filtering

O I

Tuesday, December 9, 14

500

1000 1500
Position (m)

2000

Lowpassed Data
modeled with Ricker 30Hz
lowpass at 40Hz

(25-order, zero-phase, Hann
window)




Motivation: G tolerates lowpass filtering

O I

REPSI primary IR
from low-passed data @ 40Hz

0 500 1000 1500 2000
Position (m)




Motivation: G tolerates lowpass filtering

04
Reference REPSI primary IR
from original dato

0 500 1000 1500 2000
Position (m)
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Motivation: G tolerates lowpass filtering

1.2

0.8

0.6

0.4

0.2

Zero—offset trace, 1140m

— |R Reference
—— |IR lowpass 40Hz
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Lowpass data permits coarser sampling w/o aliasing

2x decimated 4x decimated
Original (dx = 15m) lowpass 30Hz lowpass 15Hz

0+—

0.2 -

. . . . . . . 1.4 —
0 500 1000 1500 2000 0 500 1000 0 200400

Position (m) Position (m) Position (m)
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Lowpass data permits coarser sampling w/o aliasing

Impulse response solutions

1.4

0 500 1000 1500 2000
Position (m)

Time (S)

1.2 -

1.4

1000 2000

Position (m)

1.4

0 10002000
Position (m)
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Lowpass data permits coarser sampling w/o aliasing

(much faster!)

40 min

1.4

0 500 1000 1500
Position (m)

93

2000

6 min

1.2 -

1.4

0 1000 2000
Position (m)

1.5 min

0

0.2 -

0.4 -

0.61 "W

Time (s)

08k

1_.

1.2 -

1.4

0 10002000
Position (m)
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Lowpass data permits coarser sampling w/o aliasing

Zero—offset trace, 1140m
1 | | | | | | | | |

| — IR Reference
— IR 1:2 trace, lowpass 30Hz
— IR 1:4 trace, lowpass 15Hz
0.5F _
0 ‘vv iy 'val \y'vv.‘ T ‘ \ \ =8
_05 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)




Multilevel strategy for EPSI

warm-start fine-scale problem (slow)
with coarse-scale solutions (fast)
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Significant speedup from bootsirapping (in 2D)

Per-iteration FLOPs cost (one forward/adjoint) 7?2 = TNMycv = MNgre

Cost(n) = O(2nyn°logn;) + O(nsn°)

2 times FFT computing MCG & sum in FX
1 1 , 1 ;
Cost | —n | = -O2nyn~logn,) + -O(nsn”)
2 4 3
Cost : : O(2n:n~1 ) : O(nsn?)
A 16 L1y 108 T 64 nem
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Significant speedup from bootsirapping (in 2D)

Per-iteration FLOPs cost (one forward/adjoint) 7?2 = TNMycv = MNgre

Cost(n) = O(2nyn°logn;) + O(nsn°)

2 times FFT computing MCG & sum in FX

1 1 1 1
Cost (571, §nf> — ZO(Znth lOgnt) | 16O(nfn3)

1 1 1 1
Cost (En, an> — 1—6@(2ntn2 lOg nt) | C’)(nfn?’)

128
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Warm-starting/continuation from coarse solution
Example

Solution of full data Solution of 4x decimated data
0 - ' ' ! ! 0

0.2 1

e 75 iters | 2 " 60 iters

1.4

0 500 1000 1500 2000 0 10002000
08 Position (m) Position (m)




Warm-starting/continuation from coarse solution

EXO M p‘e Solution of 4x decimated data
Solution of full data 1600m/s NMO, linear interp 2x
0 1 ' - - - 0 - -

M

Prolongation

! ' ' ' 1 4 l |
0 500 1000 1500 2000 0 1000 2000

99 Position (m) Position (m)
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Warm-starting/continuation from coarse solution

EXO I p‘e Solution of 4x decimated data
Solution of 2x decimated data 1600m/s NMO, linear interp 2x
0 ' ' 0 ' '
0.2 - 0.2 -
0.4 0.4 -
- 0.6 w» 0.6-
e e
= 0.8 = 0.8 Solve
E::..'
11 1
1.2 - : 1.2 -
1.4 . . 1.4 . -
0 1000 2000 0 1000 2000

100 Position (m) Position (m)
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Warm-starting/continuation from coarse solution

Example

Solution of 2x decimated data

0

0.2 -

1.4

101

0

1000
Position (m)

2000

Solution on 2x dec data

0

0.2 -

1.4

continuation from 4x dec solution

25 iters

0

1000
Position (m)

2000
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Warm-starting/continuation from coarse solution
Example

Solution on 2x dec data
Solution of full data continuation from 4x dec solution
0 - ' ' ' ' 0

0.2 -

- - - - 1.4 - -
0 500 1000 1500 2000 0 1000 2000

102 Position (m) Position (m)
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Warm-starting/continuation from coarse solution
Example

Solution on 2x dec data > interp 2x
Solution of full data continuation from 4x dec solution

0 500 1000 1500 2000 0 500 1000 1500 2000
Position (m) Position (m)

M

Prolongation
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Warm-starting/continuation from coarse solution

Example

Solution of full data

1000 1500
Position (m)

0 500

2000

0.2 1

0.4 1

Time (s)

1.2 1

1.4

Solution on 2x dec data > interp 2x
continuation from 4x thru 2x solution

0.6 -

0.8 ¥

15 iters

500 1000 1500
Position (m)

2000

Solve
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Warm-starting/continuation from coarse solution

Example
01 ! ' ' ' Direct Primary
Solved with plain algorithm
from finest scale dato
£
|_

1.2 -

1 .4 ! I T 1 T
0 500 1000 1500 2000

105 Position (m)




Warm-starting/continuation from coarse solution
Example

01 ! ' ' ' Direct Primary

Solved with spatial sampling
continuation

dx=60m>30m > 15m

0 500 1000 1500 2000
106 Position (m)




Warm-starting/continuation from coarse solution

Example
0 1 - ' ! ' Predicted Surface Multiple
Solved with plain algorithm
0.2- - from finest scale data
0.4 -
@ 0.6- et
£
= e

1000 1500 2000
107 Position (m)




Warm-starting/continuation from coarse solution

Example
01 ! ' ' ' Predicted Surface Multiple
Solved with spatial sampling
0.2- - contfinuation
dx =60m>30m > 15m
0.4 -
@ 06 ] _.--"""_' e
£ :
— —
"0 500 1000 1500 2000

108 Position (m)




Rcv position (km)

109

Shot gather

CMP position (km)

- i
e .
" e Y — il -
h—}‘u.-“dﬁd_ﬁf

NMO-corrected stack

North sea data

Shot gather and stack

Streamer data
(regularized to fixed-
spread data)

401 source ana
reciever

12.5 m spatial grid
4 ms time sampling
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Solution wavefield comparison

Rcv position (km)

Direct Primary

Solved with plain algorithm from
finest scale dato

110
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Solution wavefield comparison

Rcv position (km)

O
£
O
c 5
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O A
O -
> 9.5
mm.m>
£55 ¢
523
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Solution multiple comparison

Rcv position (km)

Predicted Surface Multiple

Solved with plain algorithm from
finest scale dato

112

Tuesday, December 9, 14



Solution multiple comparison

Rcv position (km)

Predicted Surface Multiple

Solved with spatial sampling
continuation

dx =50m >25m > 12.5m

113
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CMP position (km)

Solution stack comparison

REPSI Primaries NMO Stack

Solved with plain algorithm from
finest scale dato

114
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CMP position (km)

Solution stack comparison

REPSI Primaries NMO Stack

Solved with spatial sampling
continuation

dx =50m >25m > 12.5m

115
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CMP position (km) CMP position (km)

. 0 2 4
Diff: 0
Normal
VS
Multiscale
0.5
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|_
1.5
2.0
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated

0 5 10 15 20 25 30 35 40
Wall time (minute)
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated

0 5 10 15 20 25 30 35 40
Wall time (minute)

60 iters at 4x decimated spatial sampling (1 min)
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated

0 5 10 15 20 25 30 35 40
Wall time (minute)

25 iters at 2x decimated spatial sampling (2 min)

eeeeeeeeeeeeeeeeeeee



Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated

0 5 10 15 20 25 30 35 40
Wall time (minute)

15 iters at full problem size w/ all data (8 min)
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated

0 5 0 15 20 25 30 35 40
Wall time (minute)

NMO linear interp, etc... (1 min)
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Significant speedup from bootstrapping
Wall fimes

From full data

Bootstrapping
from 4x decimated

0 5 10 15 20 25 30 35 40
Wall time (minute)
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Lowpass data permits coarser sampling w/o aliasing

Zero—offset trace, 1140m

—— |R Reference
— |R 1:2 trace, lowpass 30Hz
— |R 1:4 trace, lowpass 15Hz
0.5
N \_
0 —s'y v' \_f 7 ‘ o \ '
“D Errors in support estimation due to more difficult
05, 02 deconvolution problem at coarse scales

Time (s)
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EPSI as a convolutional model

Traditional convolution model

Up-going Primary = GQ

EPSI Model

Up-going Primary + Multiples = GQ

additional infoon G
P total up-going wavefield
Q down-going source signature

(& primary impulse response
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Significant speedup from bootstrapping
Wall fimes

From full data Have spare resource in the coarsest
scale problem for more sophisticated
deconvolution methods ?

5 10 15 20 25 30 35 40
Wall time (minute)

Bootstrappin
from 4x decimate
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Yes, we are working on that...
(Ernie’s talk, next)

eeeeeeeeeeeeeeeeeeee



