Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Why the modified Gauss-Newton method? Xiang Li, Ernie Esser and Felix Herrmann

Tuesday, December 9, 14

Motivation

true model

What is the modified Gauss-Newton?

FWI objective

gradi

$$\Phi(\mathbf{m}) := \frac{1}{2} \| \underbrace{\mathbf{D} - \mathbf{P}_r \mathbf{H}(\mathbf{m})^{-1} \mathbf{Q}}_{\delta \mathbf{D}} \|_F^2$$

ient (action of Jacobian adjoint or RTM operator
$$\nabla \Phi(\mathbf{m}) := \mathbf{J}^{\mathrm{T}} \delta \mathbf{D} = \operatorname{conj} \left(\frac{\partial \mathbf{H}}{\partial \mathbf{m}} (\mathbf{H}^{-1} \mathbf{Q}) \right) \odot \left((\mathbf{H}^{\mathrm{T}})^{-1} (\mathbf{P}_r^{\mathrm{T}} \delta \mathbf{D}) \right)$$

Gauss-Newton update

 $\delta \mathbf{m} := \arg \min \| \delta \mathbf{D} - \mathbf{J} \delta \mathbf{n} \|$ $\delta {f m}$

the modified Gauss-Newton upo

$$\delta \mathbf{m} := \mathbf{S}^{\mathrm{T}} \arg \min_{\mathbf{x}} \| \delta \mathbf{D} - \mathbf{J} \mathbf{S}^{\mathrm{T}} \|_{\mathbf{x}}$$

$$\begin{split} & \delta \mathbf{m} = (\mathbf{J}^{\mathrm{T}}\mathbf{J})^{-1}\mathbf{J}^{\mathrm{T}}\delta \mathbf{D} \\ & \mathbf{G} \text{auss-Newton} \\ & \text{analytic solution:} \\ & \mathbf{G} \text{auss-Newton Hessian}_{\text{RTM}} \\ & \text{of FWI objective} \\ & \mathbf{J}^{\mathrm{T}}\mathbf{x} \|_{F}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau \end{split}$$

The modified Gauss-Newton algorithm

Algorithm 1: the modified Gauss-Newton method for FWI **Result**: Output estimate for the model **m** $\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0; \epsilon;$ while $\frac{1}{2} \|\mathbf{D} - \mathbf{P}_r \mathbf{H}(\mathbf{m})^{-1} \mathbf{Q}\|_F^2 \ge \epsilon_{-} \mathbf{do}$ $\delta \mathbf{m}^{\vec{k}} := \mathbf{S}^{\mathrm{T}} \arg\min_{\mathbf{x}} \|\delta \mathbf{D} - \mathbf{J} \mathbf{S}^{\mathrm{T}} \mathbf{x}\|_{F}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau^{k}$ $\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^k + \alpha^k \delta \mathbf{m}^k$; $k \leftarrow k+1;$ end

initial model

// update with linesearch

Observation & question

- updates
- function

why the sum of all modified Gauss-Newton updates is sparse?

modified Gauss-Newton does NOT change the FWI objective

Least-squares optimization problem

unconstrained objective function

$$\min_{\mathbf{m}} \Phi(\mathbf{m}) := \left\{ \frac{1}{2} \| \mathbf{d} - \mathcal{F}[\mathbf{m}] \|_2^2 \right\}$$

Gauss-Newton update

 $\delta \mathbf{m} = \arg \min \|\delta \mathbf{d} - \mathbf{J}[\mathbf{m}_k] \delta \mathbf{m}\|_2$ $\delta \mathbf{m}$

the modified Gauss-Newton update

 $\delta \mathbf{x}$

 $\delta \mathbf{m} = \mathbf{S}^{\mathrm{H}} \arg \min \|\delta \mathbf{d} - \mathbf{J}[\mathbf{m}_{k}]\mathbf{S}^{\mathrm{H}} \delta \mathbf{x}\|_{2}^{2}$ subject to $\|\delta \mathbf{x}\|_{\ell_{1}} \leq \tau$ lasso problem

Least-squares optimization with sparse constraint

objective function with sparse constraint

$$\min_{\mathbf{x}} \Phi(\mathbf{x}) := \left\{ \frac{1}{2} \| \mathbf{d} - \mathcal{F}[\mathbf{S}^{\mathrm{H}}\mathbf{x}] \|_{2}^{2} \right\}$$

Gauss-Newton update

$$\delta \mathbf{m} = \mathbf{S}^{\mathrm{H}} \arg\min_{\delta \mathbf{x}} \|\delta \mathbf{d} - \nabla \boldsymbol{\mathcal{F}}[\mathbf{m}_k]$$

 $|_{2}^{2}$ subject to $\|\mathbf{x} - \mathbf{x}_{0}\|_{\ell_{1}} \leq \tau$

$\|\mathbf{S}^{\mathrm{H}}\delta\mathbf{x}\|_{2}^{2}$ subject to $\|\delta\mathbf{x} + \mathbf{x}_{k} - \mathbf{x}_{0}\|_{\ell_{1}} \leq \tau$

Convex problem with unique solution

$$\Phi(\mathbf{m}) := \left\{ \frac{1}{2} \|\mathbf{d} - \mathbf{A}\mathbf{m}\|_2^2 \right\}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4\\ 6 & -3 \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} -6\\ -3 \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$

 m_2 o

9

GN with unconstrained objective

10

with ℓ_1 constraint

Linear example with multiple solutions (underdetermined)

$$\Phi(\mathbf{m}) := \left\{ \frac{1}{2} \|\mathbf{d} - \mathbf{A}\mathbf{m}\|_2^2 \right\}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \end{bmatrix}$$

 m_2 o

 $\mathbf{d} = -4$

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$

GN with unconstrained objective

GN with sparse constrained objective function $\min_{\mathbf{x}} \Phi(\mathbf{x}) := \left\{ \frac{1}{2} \| \mathbf{d} - \boldsymbol{\mathcal{F}}[\mathbf{S}^{\mathrm{H}}\mathbf{x}] \|_{2}^{2} \right\} \quad \text{subject to} \quad \|\mathbf{x} - \mathbf{x}_{0}\|_{\ell_{1}} \leq \tau$

 $\tau > \tau_{true}$

 $\tau = \tau_{true}$

14

How to choose sparsity level f

$$\min_{\mathbf{m}} \Phi(\mathbf{m}) := \begin{cases} \frac{1}{2} \|\mathbf{d} - \mathcal{F}[\mathbf{m}]\|_2^2 \end{cases} \quad \delta \mathbf{m} = \mathbf{S}^{\mathrm{H}} \arg_{\delta \mathbf{x}} \mathbf{m}^2 \end{cases}$$

BPDN problem

$$\delta \mathbf{m} = \mathbf{S}^{\mathrm{H}} \arg \min_{\delta \mathbf{x}} \|\delta \mathbf{x}\|_{1}$$

subject to $\|\delta \mathbf{d} - \mathbf{J} \mathbf{S}^{\mathrm{H}} \delta \mathbf{x}\|_{2}^{2} \leq \sigma$

Pareto reference

Tuesday, December 9, 14

Least-squares migration

$\delta \mathbf{m} = \arg \min \|\delta \mathbf{u} - \mathbf{J} \delta \mathbf{m}\|_2^2$ $\delta \mathbf{m}$

- 10 random frequencies (20Hz-50Hz)
- 17 randomly selected shots out of 350 shots
- LASSO problems determined by SPGL1

See "Efficient least-squares imaging with sparsity promotion and compressive sensing"

The modified GN with L1 constraint

Lateral distance (m) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

The modified GN with L2 constraint

Lateral distance (m) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Nonlinear problem with multiple solutions

 $\|\mathbf{d} - \mathbf{m}^T \mathbf{A}^T \mathbf{A} \mathbf{m}\|_2^2$

$$\mathbf{A} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$\mathbf{d} = -4$$

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$

19

GN with unconstrained objective

21

Observations

- unconstrained objective.
- guess, if updates share the same support.

• For convex problems with unique solution, the modified Gauss-Newton method will find the solution as other methods with

• For problems with multiple solutions, the modified Gauss-Newton method can find a solution with sparse perturbation of the initial

The phase retrieval problem

objective function:

$$\Phi(\mathbf{x}) := \left\{ \frac{1}{2} \| \mathbf{d} - \operatorname{diag}(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x}) \right\}$$

- $A : 400 \times 512 \text{ matrix}$
- \mathbf{d} : 400 × 1 vector
- \mathbf{x} : 512 × 1 unknown vector

Results

GN with unconstrained objective

Modified Gauss-Newton updates

BG model example

BG Compass model

- 2 x 7 km
- 350 shot positions, 700 fixed receivers
- 3-15Hz, 10 frequency bands
- 5 GN updates for each band
- observed data is from time domain finite difference

Curvelet coefficients of updates

Conclusion

- introduce sparsity constraint by changing the objective function does not necessarily generating the solution with sparse perturbation of the initial guess
- the modified Gauss-Newton method can provides us the solution with sparse perturbation, if all updates share the same sparsity support
- the modified Gauss-Newton works for linear problems (seismic imaging)
- the modified Gauss-Newton works for FWI, if a reasonable initial model is provided

Acknowledgements Thank you for your attention !

https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Total SA, WesternGeco, and Woodside.

