Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Minimal Residual Iterative Methods for Time-Harmonic Wave-Equation

Rafael Lago, Felix Herrmann

SINBAD Consortium Meeting, Whistler, December 10th 2014

"Migration in the frequency domain on multicore CPU **is faster** than RTM in the time domain accelerated by GPU, given enough computer nodes to calculate all frequencies in parallel."

> Knibbe, Mulder, Oosterlee, Vuik Geophysics 2013

Figures: Time (38.7 min) vs. frequency (9.5min)

Erlangga 2005, Calandra et al. 2013

Parallel Sweeping Preconditioner

Multifrontal HSS

Erlangga 2005, Calandra et al. 2013

Poulson et al. 2013

Wang et al. 2010, 2011, 2012

Parallel Sweeping Preconditioner

Multifrontal HSS

Kaczmarz Sweeps

Erlangga 2005, Calandra et al. 2013

Poulson et al. 2013

Wang et al. 2010, 2011, 2012

Gordon and Gordon 2012, Lago et al. 2014

Kaczmarz Sweeps

Kaczmarz Sweeps

•
$$T_{2V}$$
 for FGMRES • CGMN and CRMN*

[Calandra et al. 2012]

[Lago et al. 2014]

* parallel version: CARP-CG and CARP-CR

Kaczmarz Sweeps

• \mathcal{T}_{2V} for FGMRES

iterative

CGMN and CRMN*
iterative

[Calandra et al. 2012]

[Lago et al. 2014]

* parallel version: CARP-CG and CARP-CR

Kaczmarz Sweeps

- \mathcal{T}_{2V} for FGMRES
- iterative
- controllable memory use[†]

CGMN and CRMN*

- iterative
- controllable memory use[†]

[Calandra et al. 2012]

[Lago et al. 2014]

* parallel version: CARP-CG and CARP-CR [†]more detail on memory use later

Iterative Methods for Time-Harmonic Wave-Equation

Kaczmarz Sweeps

- \mathcal{T}_{2V} for FGMRES
- iterative
- controllable memory use[†]
- controllable accuracy

[Calandra et al. 2012]

CGMN and CRMN*

iterative

- controllable memory use[†]
- controllable accuracy

[Lago et al. 2014]

* parallel version: CARP-CG and CARP-CR [†]more detail on memory use later

Iterative Methods for Time-Harmonic Wave-Equation

- \mathcal{T}_{2V} for FGMRES
- iterative
- controllable memory use[†]
- controllable accuracy
- few (expensive) iterations

[Calandra et al. 2012]

Kaczmarz Sweeps

CGMN and CRMN*

iterative

- controllable memory use[†]
- controllable accuracy
- many (cheap) iterations

[Lago et al. 2014]

* parallel version: CARP-CG and CARP-CR [†]more detail on memory use later

The Comparison

SEG/EAGE Overthrust, 8Hz

The Comparison

SEG/EAGE Overthrust, 8Hz

The Comparison

SEG/EAGE Overthrust, 8Hz

Calandra et al. 2012

Iterative Methods for Time-Harmonic Wave-Equation

Calandra et al. 2012

GMRES

terative Methods for Time-Harmonic Wave-Equation

Calandra et al. 2012

Rafael Lago

It's Just Rotated

• Stable for $n_{\lambda} = 10$ or more. • 1.08×10^8 vectors (1, 661.3MB each)

- Stable for $n_{\lambda} = 4$ or more. We choose $n_{\lambda} = 6$.
- 2.36×10^7 vectors (360MB each)

 † Stats are given for the SEG/EAGE Overthrust model discretized at the 8Hz for the chosen n_λ

Still Fair Play

7-points 27-points 10^{0} 10^{0} CGMN CGMN CRMN CRMN 10 10 FGMRES+T2V FGMRES+T2V **Relative Residual Norm** Relative Residual Norm 10^{-2} 10 10^{-3} 10 10^{-4} 10 200 300 Time in minutes 0 100 400 500 0 50 100 150 Time in minutes 200 250

Iterative Methods for Time-Harmonic Wave-Equation

Rafael Lago

SEG/EAGE Overthrust, 8Hz

• CRMN with 27 points is overall faster

• CRMN with 27 points is overall **faster**

• ... but FGMRES + \mathcal{T}_{2V} on 7 points is still **competitive**!

- CRMN with 27 points is overall faster
- ... but FGMRES + T_{2V} on 7 points is still **competitive**!
- ...can we try to combine the best of both worlds?!

The Original \mathcal{T}_{2V}

Iterative Methods for Time-Harmonic Wave-Equation

Rafael Lago

(11 / 21)

The Hybrid \mathcal{N}_{2V}

Rafael Lago

(12 / 21)

(not quite) The Hybrid \mathcal{N}_{2V}

Iterative Methods for Time-Harmonic Wave-Equation

Rafael Lago

(13 / 21)

Another Comparison

SEG/EAGE Overthrust, 8Hz

7-points

27-points

Rafael Lago

A Word on Memory Costs

Iterative Methods for Time-Harmonic Wave-Equation

Rafael Lago

(15 / 21)

Rankings

	Stencil	Time(min)	Ratio
\mathcal{N}_{2V}	27pts	113.5	100%
\mathcal{N}_{2V}	7pts	118.6	105%
CRMN	27pts	132.4	117%
\mathcal{T}_{2V}	7pts	141.55	125%

	Stencil	Mem(GB)	Ratio
CRMN	27pts	1.8	100%
\mathcal{N}_{2V}	27pts	7.6	422%
\mathcal{T}_{2V}	7pts	26.0	1444%
\mathcal{N}_{2V}	7pts	30.5	1694%

Rankings

	Stencil	Time(min)	Ratio	
\mathcal{N}_{2V}	27pts	113.5	100%	1
\mathcal{N}_{2V}	7pts	118.6	105%	1
CRMN	27pts	132.4	117%	9
\mathcal{T}_{2V}	7pts	141.55	125%]

	Stencil	Mem(GB)	Ratio	
CRMN	27pts	1.8	100%	Ţ
\mathcal{N}_{2V}	27pts	7.6	422%	
\mathcal{T}_{2V}	7pts	26.0	1444%	
\mathcal{N}_{2V}	7pts	30.5	1694%	

For Helmholz forward modelling

- Multigrid is very powerful when parameters are properly chosen!
- ...but CRMN on 27 points stencil seems to be overall better:
 - ullet as fast as \mathcal{T}_{2V}
 - remarkably low memory use
 - very simple implementation

Conclusions

- If 7 points stencil is strictly necessary:
 - \mathcal{N}_{2V} seems to be the best choice:
 - considerably faster than \mathcal{T}_{2V}
 - Appears to be more robust (to be confirmed)

Future Work

- Sotware Release and paper
- Try elastic equations
- Verify robustness of \mathcal{N}_{2V}
- Compare with Xiang Li's time domain code!

Try Frequency Domain!

Calandra, H., Gratton, S., Pinel, X., and Vasseur, X. (2013).

An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media.

Numerical Linear Algebra with Applications.

to appear.

Gordon, D. and Gordon, R. (2012).

Parallel solution of high frequency Helmholtz equations using high order finite difference schemes.

Applied Mathematics and Computation, 218(21):10737–10754.

Knibbe, H., Mulder, W., Oosterlee, C. W., and Vuik, C. (2014).

Closing the performance gap between an iterative frequency-domain solver and an explicit time-domain scheme for 3D migration on parallel architectures. *Geophysics*, 79:S47–S61.

Lago, R., Petrenko, A., Fang, Z., and Herrmann, F. (2014).
Fast solution of time-harmonic wave equation for full-waveform inversion.
In EAGE 2014 Extended Abstract.

Iterative Methods for Time-Harmonic Wave-Equation

Poulson, J., Engquist, B., Fomel, S., Li, S., and Ying, L. (2012).

A parallel sweeping preconditioner for high frequency heterogeneous 3d helmholtz equations.

CoRR, abs/1204.0111.

Wang, S., de Hoop, M. V., Xia, J., and Li, X. S. (2012).

Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-d anisotropic media.

Geophysical Journal International, 191(1):346-366.