Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Time-jittered marine acquisition Low-rank v/s sparsity

Rajiv Kumar, Haneet Wason and Felix J. Herrmann

University of British Columbia

Motivation

Conventional marine acquisition

- wide-azimuth data
- expensive
- subsampled source/receivers grid
- interpolation

Want more for less ...

- shorter survey times
- increased spatial sampling

Motivation

Rethink marine acquisition

- sources (and receivers) at random locations
- as long as you know the locations afterwards... it is fine!

How is this possible?

SLIM marine acquisition

- (multi-vessel, multi-airgun) acquisition w/ jittered sampling
- "blending" via compressed randomized inter-shot firing times

Mansour et. al., 2012; Wason et. al., 2013

Rank minimization source-separation, 50m grid to 25m grid,14.5 dB

Rank minimization difference, 50m grid to 25m grid

Quick recap

Time-jittered acquisition

continuous recording *START*

continuous recording *STOP*

Source separation & Interpolation

- Signal structure
 - Sparse/compressible

- Sampling scheme
 - sampling make signal less sparse in transform domain
- \blacktriangleright Sparsity-promoting recovery using ℓ_1 constraints

Impediments (3'S)

- Speed
 - slow and expensive

- Storage
 - redundant transform

- Scale-up
 - challenging for large scale seismic data

Matrix Completion

- Signal structure
 - Low rank/fast decay of singular values
- Sampling scheme
 - sampling data increase rank in a "transform domain"
- ▶ Recovery using rank penalization scheme

Low-rank structure sequential source acquisition

acquisition domain

[source-receiver]

Singular value decay

sequential source acquisition

Matrix Completion

- Signal structure
 - Low rank/fast decay of singular values
- Sampling scheme
 - sampling data increase rank in a "transform domain"
- ▶ Recovery using rank penalization scheme

Low-rank structure Adjoint

Singular value decay Adjoint

Matrix Completion

- Signal structure
 - Low rank/fast decay of singular values
- Sampling scheme
 - sampling data increase rank in a "transform domain"
- ▶ Recovery using rank penalization scheme

Low-rank v/s Sparsity

Nuclear-norm minimization

• Given a set of measurements b, aim is to solve

$$\min_{\mathbf{X}_f} \quad \sum_{f} ||\mathbf{X}_f||_* \quad \text{s.t. } ||\mathcal{A}(\mathbf{X}_f) - \mathbf{b}||_2^2 \le \sigma$$

where

$$\|\mathbf{X}_f\|_* = \sum_{i=1}^m \lambda_i = \|\lambda\|_1$$

 $ullet \mathcal{A}$ is the transform-sampling operator defined as

$$\mathcal{A}(.) = \mathbf{MF}^H \mathcal{S}^H(.)$$

M time-jittered operator

 \mathbf{F}^H \mathcal{S}^H

inverse Fourier transform along frequency axis

transform operator

Transform-sampling operator

$$\mathcal{A}(.) = \mathbf{MF}^H \mathcal{S}^H(.)$$

Transform-sampling operator

$$\mathcal{A}(.) = \mathbf{MF}^H \mathcal{S}^H(.)$$

Transform-sampling operator

Factorized formulation

$$X \in \mathbb{C}^{n_f \times n_m \times n_h}$$

$$L \in \mathbb{C}^{n_f \times n_m \times k}$$

$$R^H \in \mathbb{C}^{k \times n_h \times n_f}$$

Factorized formulation

• Reformulate $BPDN_{\sigma}$ formulation

$$\min_{\mathbf{L}_f, \mathbf{R}_f} \quad \sum_{f} \|\mathbf{L}_f \mathbf{R}_f^H\|_* \quad \text{s.t. } \|\mathcal{A}(\mathbf{L}_f \mathbf{R}_f^H) - \mathbf{b}\|_2^2 \le \sigma$$

lacktriangle Approximately solve a series of $LASSO_{ au}$ formulation

$$v(\tau) = \min_{\mathbf{L}_f, \mathbf{R}_f} ||\mathcal{A}(\mathbf{L}_f \mathbf{R}_f^H) - \mathbf{b}||_2^2 \quad \text{s.t.} \quad \sum_f ||\mathbf{L}_f \mathbf{R}_f^H||_* \le \tau$$

where \mathcal{T} is a rank regularization parameter

Factorized formulation

Nuclear norm satisfies

$$\sum_f \|\mathbf{L}_f \mathbf{R}_f^H\|_* \leq \sum_f rac{1}{2} \left\|egin{bmatrix} \mathbf{L}_f \ \mathbf{R}_f \end{bmatrix}
ight\|_F^2$$
 [Rennie and Srebro 2005]

where $\|\cdot\|_F^2$ is sum of squares of all entries

lacktriangle Choose rank k explicitly & avoid costly SVD's

Experiments & Results

Time-jittered OBC acquisition

Sparsity-promoting recovery

SNR = 11.3dB

Sparsity-promoting recovery

difference

SLIM 🖶

Rank minimization

SNR = 12.6 dB

SLIM 🕀

Rank minimization

difference

SLIM 🖶

Curvelet v/s Rank

difference, shallow section

33

Monday, December 8, 14

SLIM 🔮

Curvelet v/s Rank

difference, deeper section

34

Monday, December 8, 14

Summary

	jittered to regular (m)	Curvelet [SNR (dB)]	Low-rank [SNR (dB)]
1 source vessel (2 airgun arrays)	50 to 25	14.6	14.5
	50 to 12.5	11.3	12.6

Summary

speed up by a factor of ~ 8

	jittered to regular (m)	Curvelet [time (hr)]	Low-rank [time (hr)]
1 source vessel (2 airgun arrays)	50 to 25	14	1.9
	50 to 12.5	16	2.1

Summary

storage reduction by a factor of ~ 23 (for each copy of unknown)

	Curvelet coefficient [storage (gb)]	Low-rank factors [storage (gb)]
1 source vessel (2 airgun arrays)	2	0.09

Conclusion

- Simple algorithm
- Fast, Scalable and Memory efficient
- ▶ Easily extended to 3D marine acquisition

Future work

- ▶ Testing on more realistic 3D data sets
- Irregular grid
- Extension to time-lapse acquisition
- Software release

Rank minimization BG model

Time-lapse signal

SNR = 16.1 dB, 100 % Overlap, Joint model, 10x scale, 50 m to 12.5m grid

Acknowledgements

Thank you!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.