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Carry home messages

Randomization of field-data acquisition
» has solid theoretical underpinnings from compressive sensing
» can lead to improved wavefield reconstruction from low-cost acquisitions
» fundamental new insights how to acquire data

Randomization and repeatability in time-lapse acquisition
» could put an end to insisting on repeatability
» exploits what time-lapse surveys have in common rather than how they differ
» significantly improved time-lapse signals from severely undersampled data
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Moldoveanu, N., & Quigley, J. (2011, May). Random Sampling for Seismic Acquisition. In 73rd EAGE Conference & Exhibition.

Randomized sampling

- examples from industry (WesternGeco)

Random source locations
(thanks Nick Moldoveanu)
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Coil sampling

- examples from indusiry (WesternGeco)
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Coil sampling

- examples from indusiry (WesternGeco)
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Mosher, C. C., Keskula, E., Kaplan, S. T., Keys, R. G., Li, C., Ata, E. Z., ... & Sood, S. (2012,

November). Compressive Seismic Imaging. In 20712 SEG Annual Meeting. Society of
Exploration Geophysicists.

Randomized undersampling

- examples from indusiry (ConocoPhilips)

Deliberate & natural randomness in acquisition
(thanks to Chuck Mosher)

Compressive Sensing = Acquisition Efficiency
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Bottom line

- examples from indusiry (ConocoPhilips)

Economics
(thanks to Chuck Mosher)

Standard Production vs. CSI Production
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add refes to Craig and
Nick

Observations

Randomized coil sampling:
» renders coherent aliases harmless by turning them into incoherent noise
» “noise” removed by stacking over relatively high fold
» major improvements in RTM

CSl Houston:
» renders coherent aliases harmless by turning them into incoherent noise
» “noise” removed by exploiting structure through convex optimization
» deliberate undersampling major cost reductions in acquisition

Other examples of randomized sampling include
» missing-trace interpolation of various sorts
» simultaneous or blended marine & land acquisition
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Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, “Fighting the Curse of Dimensionality: Compressive

Sensing in Exploration Seismoloqy”, Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012
Felix J. Herrmann, “Randomized sampling and sparsity: Getting more information from fewer samples”, Geophysics,

vol. 75, p. WB173-WB187, 2010

Compressive sensing paradigm

Find representations that reveal structure
» transform-domain sparsity (e.g., Fourier, curvelets, etc.)

Sample to break the structure
» randomized acquisition (e.g., jittered sampling, time dithering, encoding, etc.)

» destroy sparsity

Recover structure by promoting
» sparsity via one-norm minimization
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Felix J. Herrmann and Gilles Hennenfent, “Non-parametric seismic data recovery with curvelet frames”, GJI/, vol. 173, p. 233-248, 2008.
Gilles Hennenfent and Felix J. Herrmann, “Simply denoise: wavefield reconstruction via jittered undersampling”, Geophysics, vol. 73, p. V19-V28, 2008.
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Golden oldies
- sparse time-harmonic signals
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Gilles Hennenfent and Felix J. Herrmann, “Simply denoise: wavefield reconstruction via jittered undersampling’,
Geophysics, vol. 73, p. V19-V28, 2008.

Jiftered sampling

. Typical spatial
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Uniform random sampling
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Jiftered sampling
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Objective

Shorten marine acquisition times & increase source sample density.

Question:

Does increased variability of firing times improve recovery?
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Objective

Shorten marine acquisition times & increase source sample density.

Questions:

Does increased randomized variability of firing times improve recovery?

If transform-domain recovery fails are there alternatives?
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Recovery

periodic low variability high variability
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Haneet Wason and Felix J. Herrmann, “Time-jittered ocean bottom seismic acquisition”, SEG, 2013
Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, “Randomized marine acquisition with
compressive sampling matrices”, Geophysical Prospecting, vol. 60, p. 648-662, 2012

Observations

Recoveries entail joint interpolations & deblendings/source separations

Question:

Does increased variability of firing times improve curvelet recovery?
v’ yes, but only for ocean bottom acquisition —towed arrays are more
challenging
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Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, “Randomized marine acquisition with

compressive sampling matrices”, Geophysical Prospecting, vol. 60, p. 648-662, 2012
Haneet Wason, Rajiv Kumar, Aleksandr Y. Aravkin, and Felix J. Herrmann, “Source separation via SVD-free

rank minimization in the hierarchical semi-separable representation”. 2014.

Observations

Recoveries entails joint interpolations & deblendings

Questions:

Does increased variability of firing times improve curvelet recovery?
v’ yes, but only for node acquisition since it is challenging for towed arrays

If transform-domain recovery fails are there alternatives?
v’ yes, rank revealing techniques succeed where curvelet-domain fail
v’ yes, rank revealing techniques give curvelet techniques a “run for their
money” with drastically improved run times & reduced memory use
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Motivation

Seemingly innocent remark by Craig J. Beasley at SBGf meeting:

“Should we repeat or not repeat in randomized marine acquisition?”




Motivation

Seemingly innocent remark by Craig J. Beasley at SBGf meeting:

“Should we repeat or not repeat in randomized marine acquisition?”

“How sensitive is the recovery to minor errors in exact repeatability ?”




Disclaimer

Assumptions:
» you are a believer in randomized acquisition & sparse recovery
» seismic data & time-lapse signal both permit sparse representations
» degree repetition refers to percentage of a survey that is repeated exactly

All observations are based on synthetic ocean bottom data...
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Disclaimer

Assumptions:
» you are a believer in randomized acquisition & sparse recovery
» seismic data & time-lapse signal both permit sparse representations
» allow for minor known errors in the repetition

All observations are based on synthetic ocean bottom data...
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Findings — a preview

Increased exact repetition amongst surveys leads to
» deteriorated recovery of the vintages themselves
» improved recovery of time-laps differences

Small and known errors lead to
» improved recovery of the vintages
» deteriorated recovery of time-lapse differences

Tentative conclusions
» do not bother to repeat as long as you know where you were
» instead aim to increase variability albeit natural variability already helps...
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