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Outline

We do seismic trace interpolation by transforming the data to the curvelet domain.

This problem has a lot of room for improvement.

In this talk we consider of a few simple techniques that can improve the results
significantly.
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Main result

Improvement on an example with 70% missing receivers.

L1 minimization in SR
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1 for randomized acquisition of seismic lines

Consider a seismic line with 178 sources, 178 receivers with a sample interval of 12.5m.
512 time samples collected in a 2s temporal window.
30% of the receiver spread is randomly subsampled.

Fully Sampled time slice in source−receiver domain
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1 for seismic trace interpolation

We want to recover f by interpolating between a smaller number of measurements b RMf .

Let S CP N with P N be the redundant curvelet transform (SHS I).

Then b RMSHx , where x can be recovered by sparse recovery algorithms like 1
minimization.
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Using 1 for seismic trace interpolation

To recover f from the measurements b RMSHx , we solve the 1 minimization problem

x 1 minimize
z RP

z 1 subject to RMSHz b 2

and approximate f by SHx 1 .

complete
Curvelet

coefficients

incomplete data
(frequency#k)

complete data
(frequency#k)

1 minimization SH
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Recovery results (shotgather # 84)

Original shot gather
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Recovery results: 1 minimization (5.3 dB)

L1 minimization in SR
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Jittered subsampling mask

Random subsampling mask
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Why does jittering help?

success of Randomized subsampling depends on destroying the structure of data in some
transform domain.

Uniformly random subsampling might result in large gap in the data.

Jittering is a safe alternative that doesn’t allow large gaps in the data.
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New subsampled data

Jittered sampling controls the average amount of information per row in the transform domain.

Subsampled shot gather
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Weighted 1 for seismic trace interpolation

complete
Curvelet

coefficients

incomplete data
(frequency#k)

complete data
(frequency#k)

incomplete data
(frequency#k+ 1)

weighted 1
minimization

complete data
(frequency#k+ 1)

1 minimization SH
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Weighted 1 for seismic trace interpolation

xw 1 minimize
z RP

z 1 w subject to RMSHz b 2

For a vector x , x 1 w iwi x i is the weighted 1 norm of x .

wi 1 if xi is in the support estimate. Otherwise wi 1.
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Why does weighting help?

We partition the data which reduces the dimension in each slice.

2-D curvelet transform captures the continuity in each slice. However we lose the
continuity along frequency slices.

We utilize the continuity along adjacent frequency slices by weighting.

If the support estimate is at least 50% accurate, we get better results.
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Recovery results: 1 vs weighted 1

L1 minimization in SR
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Recovery error: 1 vs weighted 1

L1 error image in SR
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Shot gathers: 1 vs weighted 1
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Recovery in the midpoint-offset domain

We transform the seismic line into the frequency-midpoint-offset (MH) domain.

Fully Sampled time slice in midpoint−offset domain
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Weighting in MH and SR domain

Similar to the SR domain we do the recovery by utilizing frequency slices.
The adjacent frequency slices have overlapping support in both cases.
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Why does transforming to MH domain help?
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Recovery results: 1 in SR vs weighted 1 in MH

L1 minimization in SR
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Recovery error: 1 in SR vs weighted 1 in MH

L1 error image in SR
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Shot gathers results
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2-stage algorithm

For each frequency slice first, use a fast algorithm to get a rough estimate of the data in
the time domain.

Transform the estimation to the curvelet domain.

Use the estimate in curvelet domain to improve the recovery results.
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Approximate message passing (AMP)

We use AMP in Fourier domain for the first stage.

AMP starts from an initial x 0 and iteratively goes by

x t 1 x t A z t t

z t y Ax t 1z t 1 x t 1 A z t 1 t 1

N

(1)

is the soft thresholding function x s j sign xj xj s
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The 2-stage algorithm WAMP+weighted 1

complete 2-D
DFT coefficients

incomplete data
(frequency#k)

approximate
Curvelet

coefficients

incomplete data
(frequency#k)

weighted 1
minimization

complete data
(frequency#k)

Weighted AMP S FH
s
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Simple example with a 2-sparse signal, iteration t 1

Soft thresholding: x t A z t x t A z t t

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

0

0.5

1

AMP: x t A z t t z t 1 x t A z t t z t 1 t

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

0

0.5

1

30 / 42
Monday, December 8, 14



Iteration t 2

Soft thresholding: x t A z t x t A z t t
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Iteration t 3

Soft thresholding: x t A z t x t A z t t
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AMP and WAMP for seismic trace interpolation

AMP is a delicate algorithm that just works for certain types of measurements.

We can’t use curvelets with AMP.

Instead we use 2-D DFT matrix in the source-receiver domain.

Then b RMFH
s Fsf , where Fs is a 2-D DFT matrix.
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Flowchart of the 2-stage algorithm WAMP+weighted 1
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1 vs 2-stage WAMP+weighted 1

L1 minimization in SR
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Results of the 2-stage algorithm

L1 error image in SR
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Results of the 2-stage algorithm
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Comparison of recovery results
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50% undersampling (19.6 dB)

2−stage minimization in MH
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50% undersampling (19.6 dB)
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Conclusions

1 recovery for seismic trace interpolation starts failing once we we increase the
undersampling rate.

However, it has a lot of room for improvements.

Using low cost techniques, we can have reasonable results in interpolating hugely
undersampled data.

With jittering we control the maximum gap size in the data.

With weighting we use the continuity of data in all dimension.

We get better sparse representation once we go from SR domain to MH domain.

Finding a fast estimation of the data in the curvelet domain improves the results
significantly. Especially in high frequencies.
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