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Projection onto Total Variation Constraint

Consider projecting the Marmousi model, denoted m0 onto the intersection of box and TV
constraints

ΠC(m0) = arg min
m

1

2
‖m−m0‖2

s.t. mi ∈ [bi, Bi] and ‖m‖TV ≤ τ .
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Comparison of Slices from TV Projections
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Top Left Portion of BP 2004 Velocity Benchmark
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Smooth Initial Velocity Model
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WRI without TV
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TV Constrained WRI
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Second Pass of TV Constrained WRI with Relaxed Constraint
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Acoustic Full Waveform Inversion in Frequency Domain

min
m,u

∑
sv

1

2
‖Pusv − dsv‖2 s.t. Av(m)usv = qsv [Tarantola 1984, Virieux and Operto 2009]

where Av(m)usv = qsv is the discrete Helmholtz equation

Av(m) = ω2
v diag(m) + L .

ωv is angular frequency and L is a discrete Laplacian

s = 1, ..., Ns is the source index and v = 1, ..., Nv is the frequency index

m is the model, the reciprocal of velocity squared

N is the number of points in the spatial discretization

usv ∈ CN denotes the wave�eld for source s and frequency v

qsv ∈ CN denotes the sources

dsv ∈ CNr denotes the observed data

P projects the wave�elds onto the Nr receiver locations
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Wave�eld Reconstruction Inversion

Relax the PDE constraint to a quadratic penalty and solve

min
m,u

∑
sv

1

2
‖Pusv − dsv‖2 +

λ2

2
‖Av(m)usv − qsv‖2 [van Leeuwen and Herrmann 2013]
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Variable Projection and Gauss Newton

Solve for u as a function of m:

ūsv(m
n) = arg min

usv

1

2
‖Pusv − dsv‖2 +

λ2

2
‖Av(mn)usv − qsv‖2 for all s, v

Let F (m) =
∑

sv Fsv(m), where

Fsv(m) =
1

2
‖Pūsv(m)− dsv‖2 +

λ2

2
‖Av(m)ūsv(m)− qsv‖2 ,

and use Gauss Newton to minimize F (m)
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Computing the Gradient and Gauss Newton Hessian

Using a variable projection argument [Aravkin and van Leeuwen 2012],

∇F (mn) =
∑
sv

Re
(
λ2ω2

v diag(ūsv(m
n))∗(ω2

v diag(ūsv(m
n))mn + Lūsv(m

n)− qsv)
)

The Gauss Newton approximation to the Hessian of F at mn is diagonal, given by

Hn =
∑
sv

Re(λ2ω4
v diag(ūsv(m

n))∗ diag(ūsv(m
n)) [van Leeuwen and Herrmann 2013]
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Scaled Gradient Descent Framework

A scaled gradient descent approach [Bertsekas 1999] for minimizing F can be written as

∆m = arg min
∆m∈RN

∑
sv

∆mT∇Gsv(mn) +
1

2
∆mTHn

sv∆m+ cn∆mT∆m

mn+1 = mn + ∆m .

In addition to Gauss Newton, this general framework includes gradient descent and Newton's
method.
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Including Convex Constraints

Add the constraint m ∈ C, where C is a convex set and iterate

∆m = arg min
∆m∈RN

∑
sv

∆mT∇Fsv(mn) +
1

2
∆mTHn

sv∆m+ cn∆mT∆m

s.t. mn + ∆m ∈ C

mn+1 = mn + ∆m .
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Bound Constraints without Increasing Computational Cost

Bound constraint example: C = {m ∈ RN : mj ∈ [B1, B2]}.

When H is diagonal and positive, the update for ∆m is simple.

∆m = arg min
∆m∈RN

∆mT∇F (mn) +
1

2
∆mTH∆m

s.t. mn + ∆m ∈ C
= max

(
(B1 −mn),min

(
(B2 −mn),−H−1∇F (mn)

))
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Total Variation Regularization

If we represent m as a N1 by N2 image, we can de�ne

‖m‖TV =
1

h

∑
ij

√
(mi+1,j −mi,j)2 + (mi,j+1 −mi,j)2

=
∑
ij

1

h

∥∥∥∥[(mi,j+1 −mi,j)
(mi+1,j −mi,j)

]∥∥∥∥
= ‖Dm‖1,2 ,

where D is a discrete gradient operator applied to a vectorized m.
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Proposed Model and Algorithm

Solve
min
m

F (m) s.t. m ∈ [B1, B2] and ‖m‖TV ≤ τ

by iterating

∆m = arg min
∆m

∆mT∇F (mn) +
1

2
∆mTHn∆m+ cn∆mT∆m

s.t. mn + ∆m ∈ [B1, B2] and ‖mn + ∆m‖TV ≤ τ

mn+1 = mn + ∆m .
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Solving the Convex Subproblem

There are many e�ective primal dual methods for solving the convex subproblem for ∆m based
on �nding a saddle point of the Lagrangian

L(∆m, p) =∆mT∇F (mn) +
1

2
∆mT (Hn + 2cnI)∆m+ pTD(mn + ∆m)− τ‖p‖∞,2

for mn + ∆m ∈ [B1, B2] ,

which can be related to the primal problem by noting that

sup
p
pTDm− τ‖p‖∞,2 =

{
0 if ‖Dm‖1,2 ≤ τ
∞ otherwise.
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Modi�ed PDHG Iterations

The modi�ed PDHG method [Zhu and Chan 2008, Chambolle and Pock 2011, Esser, Zhang
and Chan 2010, He and Yuan 2012] �nds a saddle point by iterating

pk+1 = arg min
p
τ‖p‖∞,2 − pTD(mn + ∆mk) +

1

2δ
‖p− pk‖2

∆mk+1 = arg min
∆m

∆mT∇F (mn) +
1

2
∆mT (Hn + 2cnI)∆m

+ ∆mTDT (2pk+1 − pk) +
1

2α
‖∆m−∆mk‖2

s.t. mn + ∆m ∈ [B1, B2]

The pk+1 update involves a projection that can be e�ciently computed, and

∆mk+1 = (Hn + ξnI)−1 max ((Hn + ξnI)(B1 −mn),

min

(
(Hn + ξnI)(B2 −mn),−∇F (mn) +

∆mk

α
−DT (2pk+1 − pk)

))
where ξn = 2cn + 1

α
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Numerical Experiment

SEG/EAGE salt model, sources and receivers near the surface, two simultaneous shots, and a
very good initial guess

q̄jv =

Ns∑
s=1

wjsqsv j = 1, 2 wjs ∈ N (0, 1) d̄jv = PA−1
v (m)q̄jv

True velocity Source and receiver locations Initial velocity
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Modeling Details

model size: 170 by 676

mesh size: 20m

number of sources: 116

number of receivers: 673

frequency range: 3-33Hz in overlapping batches of 2

maximum number of outer iterations per frequency batch: 25

maximum number of inner iterations for convex subproblems: 2000

known Ricker wavelet sources with 30Hz peak frequency

two simultaneous shots with Gaussian weights, without redraws

no added noise
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No TV Constraint, Smooth Initial Model
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With TV Constraint, Smooth Initial Model
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No TV Constraint, Using TV Result as Initial Model
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1D Slices from Salt Inversion using TV

1D slice at 4000m 1D slice at 6760m
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1D Slices without TV but using TV Initialization

1D slice at 4000m 1D slice at 6760m
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Simultaneous Shot with Redraws Experiment

Top left portion of BP 2004 velocity benchmark, sources and receivers near the surface, two
simultaneous shots, and good smooth initial model

True velocity Source and receiver locations Initial velocity
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Modeling Details

model size: 150 by 600

mesh size: 20m

number of sources: 126 (starting 1000m in from boundary)

number of receivers: 299

frequency range: 3-20Hz in overlapping batches of 2

maximum number of outer iterations per frequency batch: 25

maximum number of inner iterations for convex subproblems: 2000

known Ricker wavelet sources with 15Hz peak frequency

two simultaneous shots with Gaussian weights, WITH redraws

no added noise
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Results without TV Regularization

First pass Second pass
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Results with TV Regularization

First pass Second pass
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True Velocity Model

True velocity True velocity
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Conclusions and Future Work

Repeatedly solving TV constrained WRI problems while relaxing the TV constraint appears
to maintain some bene�ts of the regularization while still allowing �ne details into the
solution.

Determining e�ective automatic continuation strategies for the TV constraint is ongoing
work.

We aim to update the TVWRI software release with an automatic strategy for selecting a
sequence of regularization parameters.
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