Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

A Lifted l_1/l_2 Constraint for Sparse Blind Deconvolution

Ernie Esser, Tim Lin, Rongrong Wang and Felix Herrmann

December 9, 2014

Sparse Blind Deconvolution

Problem: Given n traces f_j , estimate source wavelet w and sparse reflectivities x_j Models: $f_j = x_j * w$ (BD)

$$f_j = x_j * w - x_j * f_j$$
(EPSI)

Common Assumptions:	 w is short in time w is approximately band limited w is minimum phase or impulsive 	 good initial guess for w x_j is statistically white x_j is sparse
Goal:	Solve while only assuming sparsity of x_j	
Strategy:	New lifted implementation of sparsity	promoting constraint $rac{\ x_j\ _1}{\ x_j\ _2} \leq \sqrt{k}$

Synthetic Linear Convolution Data

Problem Setup and Motivation

$$f_{j} = \mathcal{X}(x_{j} * w) + \eta_{j} \qquad \qquad \mathcal{X} \in \mathbb{R}^{N \times L} \qquad \qquad \mathcal{X} = \begin{bmatrix} I_{N} & 0 \end{bmatrix}$$
$$w = Bh \qquad \qquad B \in \mathbb{R}^{L \times K} \qquad \qquad B = \begin{bmatrix} I_{K} \\ 0 \end{bmatrix}$$
$$x_{j} = Cm_{j} \qquad \qquad C \in \mathbb{R}^{L \times N} \qquad \qquad C = \begin{bmatrix} I_{N} \\ 0 \end{bmatrix}$$

- Bilinear convolution measurements f = Cm * Bh are linear in the matrix hm^T
- For good B, C matrices, a lifted convex problem can be solved for a rank one matrix corresponding to hm^T [Ahmed, Recht and Romberg 2012]
- ${\, \bullet \,}$ For our B and C matrices, more assumptions are needed such as sparsity of m
- $\frac{\|m\|_1}{\|m\|_2} \leq \sqrt{k}$ can be lifted to a linear constraint
- We will combine lifted blind deconvolution ideas with an l_1/l_2 sparsity constraint

Fundamental III-Posedness – Scaling Ambiguity

Fundamental III-Posedness - Shift Ambiguity

Fundamental III-Posedness – Other Ambiguity

$$\min_{x,w} \frac{\lambda}{2} \|f - x * w\|^2 + \|x\|_1 + \beta \|w\|$$

- Global minimum is trivial: $x \sim \delta$ [Benichoux, Vincent and Gribonval 2013]
- Local minima may or may not be good

However, if w is known, then l_1 regularization can be used to resolve sparse well separated spikes [Claerbout and Muir 1973], [Santosa and Symes 1986], [Donoho 1992], [Dossal and Mallat 2005]

l_1/l_2 Can Evaluate Partially Blind Weiner Deconvolution Results

- $\bullet\,$ Parameterize Ricker wavelet w(v) by peak frequency v
- Use Weiner deconvolution to estimate x(v) such that $f \approx x(v) * w(v)$
- Use l_1 and l_1/l_2 to evaluate the quality of x(v)

Applications where l_1/l_2 Can Outperform l_1

• Blind image deconvolution [Krishnan, Tay and Fergus 2011], [Ji, Li, Shen and Wang 2012]

- Sparse nonnegative least squares [Esser, Lou and Xin 2013]
- Compressed sensing [Yin, Lou, He and Xin 2014]
- Blind seismic deconvolution [Repetti, Pham, Duval, Chouzenoux and Pesquet 2014] (They smooth an l_1/l_2 penalty and use alternating forward backward iterations)

Connections to Classical Methods

• Minimum Entropy Deconvolution [Wiggins 1978]

- Maximizes kurtosis $\frac{\|x^2\|_2^2}{\|x^2\|_1^2}$
- Like minimizing l_1/l_2 applied to x^2 instead of to |x|

• Variable Norm Deconvolution [Gray 1979]

• Maximizes
$$\frac{\sum_j |x_j|^{\alpha}}{(\sum_j x_j^2)^{\frac{\alpha}{2}}}$$

• Kurtosis if $\alpha = 4$
• $\frac{\|x\|_1}{\|x\|_2}$ if $\alpha = 1$, but we would want to minimize to promote sparsity for $\alpha < 2$

Lifted l_1/l_2 Constraint

$$\frac{\|x\|_1}{\|x\|_2} \le \sqrt{k} \qquad \Leftrightarrow \qquad \|x\|_1^2 - k\|x\|_2^2 \le 0$$

which can be lifted to

 $1^T |xx^T| 1 - k \operatorname{tr}(xx^T) \le 0$ [D'Aspremont 2011], [Long, Solna and Xin 2014] Split x into positive and negative parts: $x = x_p - x_m$, $x_p \ge 0$, $x_m \ge 0$ so that $|x| = x_p + x_m$

Obtain a linear lifted l_1/l_2 constraint

$$1^{T}(x_{p} + x_{m})(x_{p} + x_{m})^{T}1 - k\operatorname{tr}((x_{p} + x_{m})(x_{p} + x_{m})^{T}) \leq 0$$

Lifted Blind Deconvolution

$$w=Bh,\ x=Cm,\ f=x*w o f=\mathcal{A}_f(hm^T)$$
 for linear $\mathcal{A}_f.$

For good B, C matrices, $\min_X ||X||_*$ s.t. $\mathcal{A}_f(X) = f$ has a unique rank one solution at $X = hm^T$ [Ahmed, Recht and Romberg 2012]

Lift
$$\begin{bmatrix} h \\ m_p \\ m_m \end{bmatrix}$$
 to $Z = \begin{bmatrix} h \\ m_p \\ m_m \end{bmatrix} \begin{bmatrix} h^T & m_p^T & m_m^T \end{bmatrix}$ and combine:

- Lifted data constraint
- Lifted sparsity constraint
- ullet Constraint to ensure m_p and m_m have nonoverlapping support and consistent signs
- ullet Normalization constraint on h
- A low rank penalty such as $\operatorname{tr}(Z) \|Z\|_F$

Rank r Approximation

Solving for Z is too expensive. Compromise by solving for rank $r \ H, \ M_p$ and M_m in the factorization

$$Z = \begin{bmatrix} H \\ M_p \\ M_m \end{bmatrix} \begin{bmatrix} H^T & M_p^T & M_M^T \end{bmatrix}$$

Constraints for each measurement:

- Data: $\|f \mathcal{A}_f(HM_p^T HM_m^T)\| \leq \epsilon$
- Sparsity: $1^T (M_p + M_m)(M_p + M_m)^T 1 k \operatorname{tr}((M_p + M_m)(M_p + M_m)^T) \le 0$
- Support and signs: ${
 m tr}(M_pM_m^T)=0$, $M_p\geq 0$, $M_m\geq 0$

Additional constraints and penalties:

- Wavelet normalization $\|h\| = 1$ via $\operatorname{tr}(HH^T) = 1$
- Low rank penalty $||H||_F^2 + ||M_p||_F^2 + ||M_m||_F^2 ||H^TH + M_p^TM_p + M_m^TM_m||_F$
- Optional regularization penalties $\|\Gamma H\|_F^2 + \|M_p + M_m\|_F^2$

$$\min_{x} F(x) \qquad \text{s.t.} \qquad h_i(x) \in C_i$$

Assume C_i is convex and F, h_i are differentiable with Lipschitz continuous gradient.

Find a saddle point of the augmented Lagrangian

$$L(x,p) = F(x) + \sum_i \frac{1}{2\delta_i} \|D_{C_i}(p_i + \delta_i h_i(x))\|^2 - \frac{1}{2\delta_i} \|p_i\|^2$$

where $D_{C_i}(p) = p - \prod_C(p)$ (distance from p to C_i)

by iterating

$$x^{k+1} = \arg\min_{x} L(x, p^k)$$
$$p_i^{k+1} = D_{C_i}(p_i^k + \delta_i h_i(x^{k+1}))$$

Recovered Wavelet for n = 5, r = 1, SNR = 23.6

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

Recovered Sparse Signal for n = 5, r = 1, **SNR** = 23.6

Recovered Wavelet for n = 5, r = 1, SNR = 13.5

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

Recovered Sparse Signal for n = 5, r = 1, **SNR** = 13.5

Recovered Wavelet for n = 50, r = 1, SNR = 13.5

Recovered Sparse Signal for n = 50, r = 1, SNR = 13.5

Recovered Wavelet for n = 50, r = 1, SNR = 5.25

Recovered Sparse Signal for n = 50, r = 1, SNR = 5.25

Random Initial Guess

Modifications for EPSI Model

$$g_j = x_j * w - x_j * g_j$$

- Change data constraint to $\|g \mathcal{A}_f(HM_p^T HM_m^T) + \mathcal{A}_g(GM_p^T GM_m^T)\| \leq \tilde{\epsilon}$
- Replace $\operatorname{tr}(HH^T)=1$ with $\operatorname{tr}(HH^T)\geq c$
- Must prevent spikes at early times. Since x = Cm, let $C = \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix}$

EPSI Recovered Wavelet for n = 5, r = 1, **SNR** = 20.8

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

EPSI Recovered Sparse Signal for n = 5, r = 1, **SNR** = 20.8

EPSI Recovered Wavelet for n = 5, r = 1, **SNR** = 9.82

(included $\|\Gamma H\|_F^2$ to promote impulsive wavelet)

EPSI Recovered Sparse Signal for n = 5, r = 1, **SNR** = 9.82

EPSI Recovered Wavelet for n = 50, r = 1, SNR = 14.2

EPSI Recovered Sparse Signal for n = 50, r = 1, SNR = 14.2

- Method of Multipliers implementation of a lifted l_1/l_2 sparsity constraint can solve EPSI and standard 1D blind deconvolution problems
- Works with a random initial guess
- With more measurements, results improve and data can be noisier
- Higher rank r>1 (not shown) works, but results so far are slightly worse than r=1
- Compare to alternative approaches and other l_1/l_2 implementations
- Incorporate into multilevel EPSI algorithm at the coarsest level, where the EPSI deconvolution problems are smaller but more difficult
- Prepare future software release