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Sparse Blind Deconvolution

Problem:

Models:

Common

Assumptions:

Goal:

Strategy:

Given n traces f;, estimate source wavelet w and sparse reflectivities z;

fi=zj*xw (BD)
fi=xjxw—xj*f; (EPSI)

o w is short in time o good initial guess for w
o w is approximately band limited o z; is statistically white
@ w is minimum phase or o x; is sparse

impulsive

Solve while only assuming sparsity of z;

New lifted implementation of sparsity promoting constraint Izl <k
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Problem Setup and Motivation

fi=X(z;xw) +n; X e RV*L X=|Iy 0
J J J

w = Bh B e RI*K B= [Ig]
zj = Cm, C € RIXN C= [Iﬂ

©

Bilinear convolution measurements f = C'm * Bh are linear in the matrix hm”

For good B, C matrices, a lifted convex problem can be solved for a rank one matrix
corresponding to hm” [Ahmed, Recht and Romberg 2012]

(7]

©

For our B and C' matrices, more assumptions are needed such as sparsity of m

° HZ”; < Vk can be lifted to a linear constraint

We will combine lifted blind deconvolution ideas with an {1 /Iy sparsity constraint

(+]
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[y Regularization

A
min > || f — z x wl|® + [|z]1 + 8wl
zw 2

o Global minimum is trivial: © ~ § [Benichoux, Vincent and Gribonval 2013]
o Local minima may or may not be good
However, if w is known, then [; regularization can be used to resolve sparse well separated

spikes [Claerbout and Muir 1973], [Santosa and Symes 1986], [Donoho 1992], [Dossal and
Mallat 2005]



l1/ls Can Evaluate Partially Blind Weiner Deconvolution Results

o Parameterize Ricker wavelet w(v) by peak frequency v
o Use Weiner deconvolution to estimate z(v) such that f ~ z(v) *x w(v)

o Use I} and [1 /I3 to evaluate the quality of z(v)

—lixll,
208 1l Al

“a 6 8 10 12 14 16
peak frequency (10 is true)
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Applications where [, /I, Can Outperform [

211 i two dimensions |]|1 in two dimensions
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Blind image deconvolution [Krishnan, Tay and Fergus 2011], [Ji, Li, Shen and Wang 2012]
Sparse nonnegative least squares [Esser, Lou and Xin 2013]
Compressed sensing [Yin, Lou, He and Xin 2014]

Blind seismic deconvolution [Repetti, Pham, Duval, Chouzenoux and Pesquet 2014]
(They smooth an [; /Iy penalty and use alternating forward backward iterations)
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Connections to Classical Methods

o Minimum Entropy Deconvolution [Wiggins 1978]

212
o Maximizes kurtosis H;HE
1

o Like minimizing [/l applied to x? instead of to |z

o Variable Norm Deconvolution [Gray 1979]
>, leg)®
(2,232
o Kurtosis if « =4
”j”; if « =1, but we would want to minimize to promote sparsity for o < 2

o Maximizes
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Lifted [, /l; Constraint

Til1
Izl 7 o e kf2lZ <o
el

which can be lifted to

1T |zaT 1 = ktr(za®) <0 [D’Aspremont 2011], [Long, Solna and Xin 2014]

Split z into positive and negative parts: © =z, — y,, Tp > 0, T, > 0 so that |z| = zp + 2,
Obtain a linear lifted I3 /Iy constraint

lT(mp + ) (zp + a:m)Tl —ktr((zp + zm)(zp + xm)T) <0



Lifted Blind Deconvolution

w=Bh, x=Cm, f=zxw— f=Ar(hm?) for linear A;.

For good B, C' matrices, miny || X |« s.t. Af(X) = f has a unique rank one solution at
X = hm? [Ahmed, Recht and Romberg 2012]

h h T T T
Lift | mp | to Z = | m, Wty ] and combine:
M, M,

o Lifted data constraint
o Lifted sparsity constraint

o Constraint to ensure m, and m,, have nonoverlapping support and consistent signs
o Normalization constraint on h

o A low rank penalty such as tr(Z) — || Z]|F
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Rank r Approximation

Solving for Z is too expensive. Compromise by solving for rank » H, M,, and M,, in the
factorization

(7Y M, My

Constraints for each measurement:
o Data: ||f — Ap(HM] — HML)| < e
o Sparsity: 17(M,, + M) (M + Mp)T1 — ktr((M, + M) (M, + Mpy,)T) <0
o Support and signs: tr(Mng) =0, M,>0 My, >0

Additional constraints and penalties:
o Wavelet normalization ||h|| = 1 via tr(HH?) =1
o Low rank penalty || H||% + || Mpl|3, + | M7 — |HT H + MI M, + M M, ||
o Optional regularization penalties | H||% + || M, + M, ||%
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Method of Multipliers

min F'(x) s.t. hi(z) € C;

Assume C; is convex and F', h; are differentiable with Lipschitz continuous gradient.

Find a saddle point of the augmented Lagrangian

1

L, +Z 1D i+ b (@) 5ol

where D¢, (p) = p —Ilc(p) (distance from p to C})

by iterating

k+1

2" = arg min L(x, p*)
x

pitt = Do, (pF + dihi(a" 1)
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Recovered Wavelet for n =5, r =1, SNR = 23.6
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Recovered Wavelet for n =5, r

=1, SNR =135
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Recovered Wavelet for n =50, r =1, SNR = 13.5
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Recovered Wavelet for n =50, r =1, SNR = 5.25
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Recovered Sparse Signal for n =50, r =1, SNR = 5.25

T
2
—true
1.5¢ —estimated
1+
0.5-
0 T | v
-0.5
A : : .
0 0.5 1 1.5

1

—f1 noisy
f1 clean
x1*w

0.5 1 1.5 2

23/32



Initial H Initial M, Initial M,,
0.2 0.12 0.12
0.15 01 | 0.1
H
0.08 0.08
0.05 | ‘
‘ 0.06 ‘ 0.06
0 ‘ | ‘
|
_,,_05 0.04 ‘ 0.04
-0.1 0.02 0.02
-0.15 0 0
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

24 /32



gjzxj*w—xj*gj

o Change data constraint to ||g — Ay (HM,] — HM) + Ag(GM,] — GML)| < ¢
o Replace tr(HH™) = 1 with tr(HHT) > ¢

=)

o Must prevent spikes at early times. Since x = Cm, let C = |1

o
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EPSI Recovered Wavelet for n =5, r =1, SNR = 20.8
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EPSI Recovered Sparse Signal for n =5, r =1, SNR = 20.8
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EPSI Recovered Wavelet for n =5, r =1, SNR = 9.82
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EPSI Recovered Sparse Signal for n =5, r =1, SNR = 9.82
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EPSI Recovered Wavelet for n =50, r =1, SNR = 14.2

0.6

w

true

—estimated

0.5

1.5

dB

=201

-40

-60|

-80f

-100

—bdata
btrue
— bestimated

20 40 60 80 100 120

30/32



EPSI Recovered Sparse Signal for n =50, r =1, SNR = 14.2

0.3

0.21

0.1

(a1

—true
—estimated

0.5

1.5

1

——g noisy
g clean
x*w - x*g

0.5

1.5

31/32



Conclusions and Future Work

© ©6 6 o o

Method of Multipliers implementation of a lifted {1 /l2 sparsity constraint can solve EPSI
and standard 1D blind deconvolution problems

Works with a random initial guess

With more measurements, results improve and data can be noisier

Higher rank r > 1 (not shown) works, but results so far are slightly worse than r =1
Compare to alternative approaches and other [; /Iy implementations

Incorporate into multilevel EPSI algorithm at the coarsest level, where the EPSI
deconvolution problems are smaller but more difficult

Prepare future software release



