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Sparse Blind Deconvolution

Problem: Given n traces fj , estimate source wavelet w and sparse re�ectivities xj

Models: fj = xj ∗ w (BD)

fj = xj ∗ w − xj ∗ fj (EPSI)

Common

Assumptions:

w is short in time

w is approximately band limited

w is minimum phase or
impulsive

good initial guess for w

xj is statistically white

xj is sparse

Goal: Solve while only assuming sparsity of xj

Strategy: New lifted implementation of sparsity promoting constraint
‖xj‖1
‖xj‖2 ≤

√
k
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Synthetic Linear Convolution Data

w (peak frequency 10Hz) x1

x1 ∗ w fj = x1 ∗ w + η , j = 1, ..., n
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Problem Setup and Motivation

fj = X (xj ∗ w) + ηj X ∈ RN×L X =
[
IN 0

]
w = Bh B ∈ RL×K B =

[
IK
0

]
xj = Cmj C ∈ RL×N C =

[
IN
0

]

Bilinear convolution measurements f = Cm ∗Bh are linear in the matrix hmT

For good B, C matrices, a lifted convex problem can be solved for a rank one matrix
corresponding to hmT [Ahmed, Recht and Romberg 2012]

For our B and C matrices, more assumptions are needed such as sparsity of m
‖m‖1
‖m‖2 ≤

√
k can be lifted to a linear constraint

We will combine lifted blind deconvolution ideas with an l1/l2 sparsity constraint
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Fundamental Ill-Posedness � Scaling Ambiguity

x w x ∗ w

10x w/10 x ∗ w
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Fundamental Ill-Posedness � Shift Ambiguity

x w x ∗ w

x(t+ .1) w(t− .1) x ∗ w
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Fundamental Ill-Posedness � Other Ambiguity

x w x ∗ w

x+ η w (x+ η) ∗ w
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l1 Regularization

min
x,w

λ

2
‖f − x ∗ w‖2 + ‖x‖1 + β‖w‖

Global minimum is trivial: x ∼ δ [Benichoux, Vincent and Gribonval 2013]

Local minima may or may not be good

However, if w is known, then l1 regularization can be used to resolve sparse well separated
spikes [Claerbout and Muir 1973], [Santosa and Symes 1986], [Donoho 1992], [Dossal and
Mallat 2005]
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l1/l2 Can Evaluate Partially Blind Weiner Deconvolution Results

Parameterize Ricker wavelet w(v) by peak frequency v

Use Weiner deconvolution to estimate x(v) such that f ≈ x(v) ∗ w(v)

Use l1 and l1/l2 to evaluate the quality of x(v)
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Applications where l1/l2 Can Outperform l1

‖x‖1
‖x‖2 in two dimensions ‖x‖1 in two dimensions

Blind image deconvolution [Krishnan, Tay and Fergus 2011], [Ji, Li, Shen and Wang 2012]

Sparse nonnegative least squares [Esser, Lou and Xin 2013]

Compressed sensing [Yin, Lou, He and Xin 2014]

Blind seismic deconvolution [Repetti, Pham, Duval, Chouzenoux and Pesquet 2014]
(They smooth an l1/l2 penalty and use alternating forward backward iterations)
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Connections to Classical Methods

Minimum Entropy Deconvolution [Wiggins 1978]

Maximizes kurtosis
‖x2‖2

2

‖x2‖2
1

Like minimizing l1/l2 applied to x2 instead of to |x|

Variable Norm Deconvolution [Gray 1979]

Maximizes
∑
j |xj |

α

(
∑
j x

2
j )
α
2

Kurtosis if α = 4
‖x‖1

‖x‖2
if α = 1, but we would want to minimize to promote sparsity for α < 2
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Lifted l1/l2 Constraint

‖x‖1
‖x‖2

≤
√
k ⇔ ‖x‖21 − k‖x‖22 ≤ 0

which can be lifted to

1T |xxT |1− k tr(xxT ) ≤ 0 [D'Aspremont 2011], [Long, Solna and Xin 2014]

Split x into positive and negative parts: x = xp − xm, xp ≥ 0, xm ≥ 0 so that |x| = xp + xm

Obtain a linear lifted l1/l2 constraint

1T (xp + xm)(xp + xm)T 1− k tr((xp + xm)(xp + xm)T ) ≤ 0
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Lifted Blind Deconvolution

w = Bh, x = Cm, f = x ∗ w → f = Af (hmT ) for linear Af .

For good B, C matrices, minX ‖X‖∗ s.t. Af (X) = f has a unique rank one solution at
X = hmT [Ahmed, Recht and Romberg 2012]

Lift

 h
mp

mm

 to Z =

 h
mp

mm

 [hT mT
p mT

m

]
and combine:

Lifted data constraint

Lifted sparsity constraint

Constraint to ensure mp and mm have nonoverlapping support and consistent signs

Normalization constraint on h

A low rank penalty such as tr(Z)− ‖Z‖F
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Rank r Approximation

Solving for Z is too expensive. Compromise by solving for rank r H, Mp and Mm in the
factorization

Z =

 H
Mp

Mm

 [HT MT
p MT

M

]
Constraints for each measurement:

Data: ‖f −Af (HMT
p −HMT

m)‖ ≤ ε
Sparsity: 1T (Mp +Mm)(Mp +Mm)T 1− k tr((Mp +Mm)(Mp +Mm)T ) ≤ 0

Support and signs: tr(MpM
T
m) = 0, Mp ≥ 0, Mm ≥ 0

Additional constraints and penalties:

Wavelet normalization ‖h‖ = 1 via tr(HHT ) = 1

Low rank penalty ‖H‖2F + ‖Mp‖2F + ‖Mm‖2F − ‖HTH +MT
p Mp +MT

mMm‖F
Optional regularization penalties ‖ΓH‖2F + ‖Mp +Mm‖2F
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Method of Multipliers

min
x
F (x) s.t. hi(x) ∈ Ci

Assume Ci is convex and F , hi are di�erentiable with Lipschitz continuous gradient.

Find a saddle point of the augmented Lagrangian

L(x, p) = F (x) +
∑
i

1

2δi
‖DCi(pi + δihi(x))‖2 − 1

2δi
‖pi‖2

where DCi(p) = p−ΠC(p) (distance from p to Ci)

by iterating

xk+1 = arg min
x
L(x, pk)

pk+1
i = DCi(p

k
i + δihi(x

k+1))
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Recovered Wavelet for n = 5, r = 1, SNR = 23.6

w |ŵ|

(included ‖ΓH‖2F to promote impulsive wavelet)
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Recovered Sparse Signal for n = 5, r = 1, SNR = 23.6

x1 f1
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Recovered Wavelet for n = 5, r = 1, SNR = 13.5

w |ŵ|

(included ‖ΓH‖2F to promote impulsive wavelet)
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Recovered Sparse Signal for n = 5, r = 1, SNR = 13.5

x1 f1
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Recovered Wavelet for n = 50, r = 1, SNR = 13.5

w |ŵ|
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Recovered Sparse Signal for n = 50, r = 1, SNR = 13.5

x1 f1
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Recovered Wavelet for n = 50, r = 1, SNR = 5.25

w |ŵ|
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Recovered Sparse Signal for n = 50, r = 1, SNR = 5.25

x1 f1

23 / 32



Random Initial Guess

Initial H Initial Mp Initial Mm
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Modi�cations for EPSI Model

gj = xj ∗ w − xj ∗ gj

Change data constraint to ‖g −Af (HMT
p −HMT

m) +Ag(GMT
p −GMT

m)‖ ≤ ε̃
Replace tr(HHT ) = 1 with tr(HHT ) ≥ c

Must prevent spikes at early times. Since x = Cm, let C =

0
I
0


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EPSI Recovered Wavelet for n = 5, r = 1, SNR = 20.8

w |ŵ|

(included ‖ΓH‖2F to promote impulsive wavelet)
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EPSI Recovered Sparse Signal for n = 5, r = 1, SNR = 20.8

x1 f1
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EPSI Recovered Wavelet for n = 5, r = 1, SNR = 9.82

w |ŵ|

(included ‖ΓH‖2F to promote impulsive wavelet)
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EPSI Recovered Sparse Signal for n = 5, r = 1, SNR = 9.82

x1 f1
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EPSI Recovered Wavelet for n = 50, r = 1, SNR = 14.2

w |ŵ|
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EPSI Recovered Sparse Signal for n = 50, r = 1, SNR = 14.2

x1 f1
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Conclusions and Future Work

Method of Multipliers implementation of a lifted l1/l2 sparsity constraint can solve EPSI
and standard 1D blind deconvolution problems

Works with a random initial guess

With more measurements, results improve and data can be noisier

Higher rank r > 1 (not shown) works, but results so far are slightly worse than r = 1

Compare to alternative approaches and other l1/l2 implementations

Incorporate into multilevel EPSI algorithm at the coarsest level, where the EPSI
deconvolution problems are smaller but more di�cult

Prepare future software release
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