Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Fast least-squares imaging with source estimation using multiples

Ning Tu, Aleksandr Y. Aravkin, Tristan van Leeuwen, and Felix Herrmann

Motivation

- high fidelity, true-amplitude seismic image by linearized inversion
- accurate source signature

How important is the source wavelet for linearized inversion?

Linearized inversion with the true wavelet

whereas...

Linearized inversion with *a wrong* wavelet

Theory

Least-squares migration with unknown source wavelet

$$\min_{\delta \mathbf{m}, \mathbf{q}} \sum_{i=1}^{n_f} \|\mathbf{d}_i - \nabla \mathbf{F}_i[\mathbf{m}_0, \mathbf{Q}(q_i)] \delta \mathbf{m} \|_2^2$$

 $\delta \mathbf{m}$: model perturbation

q : source wavelet spectra $\mathbf{q} = [q_1, \cdots, q_{n_f}]$

SLIM 🛃

d_i: vectorized primary wavefield

 $\nabla \mathbf{F}_i$: linearized demigration operator \mathbf{m}_0 : background model $\mathbf{Q}(q_i)$: source wavefield $\mathbf{Q}(q_i) = q_i \mathbf{I}$

Major challenges

- preprocessing to remove coherent noise such as surface multiples
- expensive simulation cost
- nonlinearity with unknown source wavelet

Our solutions

- imaging with active contributions from surface multiples
- using *dimensionality reduction* techniques to speed up inversion
- estimating the source wavelet on the fly

Embracing surface multiples

- imaging primaries and multiples simultaneously
- removing amplitude/phase ambiguity using extra information from multiples
- exploiting higher-wavenumber components in multiples

Tu and Herrmann. 2012

$$\min_{\delta \mathbf{m}, \mathbf{q}} \sum_{i=1}^{n_f} \|\mathbf{d}_i - \nabla \mathbf{F}_i[\mathbf{m}_0, \mathbf{Q}(q_i)] \delta \mathbf{m}\|_2^2$$

- d_i: vectorized total up-going wavefield,
 primaries and surface multiples
- Q(q_i) = q_iI D_i: generalized source wavefield containing the total downgoing wavefield

RTM of multiples

SLIM 🔮

Muijs et. al., 2007 Tu et. al., 2013c

Deconvolutional image of multiples

Inversion result

[computation cost ~ 1 adjoint migration]

Herrmann and Li, 2012 Tu and Herrmann, 2012 Candes et. al., 2006

Dimensionality reduction with sparsity promotion

SLIM 🔮

BPDN:
$$\min_{\mathbf{x},\mathbf{q}} \|\mathbf{x}\|_1$$

subject to $\sum_{i \in \mathbb{F}} \|\underline{\mathbf{d}}_i - \nabla \mathbf{F}_i[\mathbf{m}_0, \underline{\mathbf{Q}}(q_i)] \mathbf{S}^* \mathbf{x}\|_2^2 \leq \sigma^2$

frequency: select a random frequency subset source: forming randomized source aggregates S^* : Curvelet synthesis operator σ : tolerance for noise/modelling error, etc

Aravkin et. al. 2012 van den Berg and Friedlander, 2008

Alternate formulation

LASSO: $\min_{\mathbf{x},\mathbf{q}} \sum_{i \in \mathbb{F}} \|\underline{\mathbf{d}}_i - \nabla \mathbf{F}_i[\mathbf{m}_0, \underline{\mathbf{Q}}(q_i)] \mathbf{S}^* \mathbf{x} \|_2^2$ subject to $\|\mathbf{x}\|_1 \leq \tau$

 τ : sparsity level

Is L1 necessary?

[with L2 regularization, we use true Q in this example]

By L2 minimization: $\min_{\mathbf{x}} \|\mathbf{x}\|_{2}$ subject to $\sum_{i \in \mathbb{F}} \|\underline{\mathbf{d}}_{i} - \nabla \mathbf{F}_{i}[\mathbf{m}_{0}, \underline{\mathbf{Q}}] \mathbf{S}^{*} \mathbf{x}\|_{2}^{2} \leq \sigma^{2}$

Is L1 necessary?

[with L1 regularization, we use true Q in this example]

By L1 minimization: $\min_{\mathbf{x}} \|\mathbf{x}\|_{1}$ subject to $\sum_{i \in \mathbb{F}} \|\underline{\mathbf{d}}_{i} - \nabla \mathbf{F}_{i}[\mathbf{m}_{0}, \underline{\mathbf{Q}}] \mathbf{S}^{*} \mathbf{x}\|_{2}^{2} \leq \sigma^{2}$

Herrmann and Li, 2012 Tu and Herrmann, 2012

Further acceleration by rerandomization

- We draw a new subsampling operator for each LASSO subproblem:
 - new random subset of frequencies
 - new randomized source aggregates
- faster convergence

Source estimation

 $\min_{\mathbf{x},\mathbf{q}} \sum_{i \in \mathbb{F}} \|\underline{\mathbf{d}}_i - \nabla \mathbf{F}_i[\mathbf{m}_0, \underline{\mathbf{Q}}(q_i)] \mathbf{S}^* \mathbf{x} \|_2^2$

subject to $\|\mathbf{x}\|_1 \leq \tau$

- nonlinear by having two unknowns
- the two unknowns are separable
- alternating optimization

Wavefield matching

Given an ${\bf x}$, a least squares solution for ${\bf q}$ can be determined:

• primaries only:

$$\tilde{q}_i(\mathbf{x}) = \frac{\langle \nabla \mathbf{F}_i[\mathbf{m}_0, \underline{\mathbf{I}}] \mathbf{S}^* \mathbf{x}, \mathbf{d}_i \rangle}{\|\nabla \mathbf{F}_i[\mathbf{m}_0, \underline{\mathbf{I}}] \mathbf{S}^* \mathbf{x} \|_2^2}$$

• with multiples:

 $\tilde{q}_{i}(\mathbf{x}) = \frac{\langle \nabla \mathbf{F}_{i}[\mathbf{m}_{0}, \underline{\mathbf{I}}] \mathbf{S}^{*} \mathbf{x}, \mathbf{d}_{i} + \nabla \mathbf{F}_{i}[\mathbf{m}_{0}, \underline{\mathbf{D}}_{i}] \mathbf{S}^{*} \mathbf{x} \rangle}{\|\nabla \mathbf{F}_{i}[\mathbf{m}_{0}, \underline{\mathbf{I}}] \mathbf{S}^{*} \mathbf{x}\|_{2}^{2}}$

Aravkin and van Leeuwen 2012

Variable projection

We now solve:

 $\min_{\mathbf{x}} \sum_{i \in \mathbb{F}} \|\underline{\mathbf{d}}_{i} - \nabla \mathbf{F}_{i}[\mathbf{m}_{0}, \underline{\mathbf{Q}}(\tilde{q}_{i}(\mathbf{x}))]\mathbf{S}^{*}\mathbf{x}\|_{2}^{2}$ subject to $\|\mathbf{x}\|_{1} \leq \tau$

Example

Courtesy of BG Group

Experiments setup

- synthetic BG Compass model (cropped)
- 209 co-located sources/receivers, 12m spacing, 6m depth
- linearized data, i.e., $\mathbf{d} = \nabla \mathbf{F} \delta \mathbf{m}$
- Ricker wavelet w. 20Hz peak freq.
- 30 composite sources, 15 frequencies in the inversion, 74X subsampling

Experiments setup

	SOURCE WAVELET	
DATA TYPE	PRIMARY, TRUE SOURCE	PRIMARY, Source estimation
	W. MULTIPLES, TRUE SOURCE	W. MULTIPLES, SOURCE ESTIMATION

Background velocity

True perturbation

Using primaries

w. true source

PRIMARY, TRUE SOURCE	PRIMARY, SOURCE ESTIMATION
w. Multiples, True source	w. Multiples, Source estimation

Using primaries

w. source estimation

PRIMARY, True source	PRIMARY, SOURCE ESTIMATION
w. Multiples, True source	w. Multiples, Source estimation

With multiples

w. true source

PRIMARY, TRUE SOURCE	PRIMARY, SOURCE ESTIMATION
w. Multiples, True source	w. Multiples, Source estimation

With multiples

w. source estimation

PRIMARY, TRUE SOURCE	PRIMARY, SOURCE ESTIMATION
w. Multiples, True source	w. Multiples, Source estimation

RTM with multiples

[w. true source]

Using primaries

w. source estimation

PRIMARY, True source	PRIMARY, SOURCE ESTIMATION
w. Multiples, True source	w. Multiples, Source estimation

With multiples

w. source estimation

PRIMARY, TRUE SOURCE	PRIMARY, SOURCE ESTIMATION
w. Multiples, True source	w. Multiples, Source estimation

True perturbation

Wavenumber contents [of traces from images w. source estimation]

Black dashed: true; Blue: w. multiple; Red: primaries only (rescaled)

Estimated wavelet [amplitude spectrum]

Black dashed: true; Blue: w. multiple; Red: primaries only (rescaled)

Estimated wavelet [phase spectrum]

Black: true; Blue: w. multiple; Red: primaries only (rescaled)

Conclusion

• The use of surface-related multiples improves both the image resolution, and the accuracy of estimated source wavelet.

SLIM

- With sparse constraint and rerandomization, we greatly reduce the dimensionality of the system without compromising the image quality.
- The proposed source estimation works well in the linearized sparse inversion framework.

Thank you for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.