Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Cosparse seismic data interpolation Tim T.Y. Lin and Felix J. Herrmann

SLIM 🛃

What is meant by "sparsity"?

sparsity infers structure

Sparsity infers structure under transforms

Sparsity/structure resolves ambiguity

SLIM 🛃

Sparsity infers structure under transforms

SLIM 🔮

Sparsity infers structure under transforms

Sparsity infers structure under transforms

[Candes & Donoho '02-'05, Do '02, Demanet '05, Ying '05]

Curvelets

Curvelet tiling

SLIM 🐣

Curvelets & Seismic Data

figure from Hennenfent 06

Curvelet synthesis

Curvelet dictionary is redundant

Size of physical image *m*

D

Number of coefficients n

Curvelet dictionary is redundant

Many useful ones also:

- Stationary wavelet
- Windowed Fourier/Cosine
- Ridgelets
- Wave atoms
- Radon
- many more...

Curvelet and Solution (02-'09, Do '02, Demanet '05, Ying '05]

Curvelet and Solution (02-'09, Do '02, Demanet '05, Ying '05]

Curvelet and Solution (02-'09, Do '02, Demanet '05, Ying '05]

Trace interpolation via sparsity

 $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is)

$$\tilde{\mathbf{x}} = \mathbf{D} \cdot \underset{\mathbf{Z}}{\operatorname{argmin}} \|\mathbf{z}\|_0 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$$

- 0-norm measure sparsity (# of non-zero coefficients)
- y is data with missing traces
- A is trace mask (match data at observed trace positions)
- \mathbf{x} is estimate interpolated gather
- \mathbf{z} is *a* choice of curvelet coefficients for \mathbf{x}

Trace interpolation via sparsity

 $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is)

$$\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname{argmin}_{\mathbf{Z}} \|\mathbf{z}\|_{1} \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$$

- 0-norm measure sparsity (# of non-zero coefficients)
- y is data with missing traces
- A is trace mask (match data at observed trace positions)
- \mathbf{x} is estimate interpolated gather
- \mathbf{z} is *a* choice of curvelet coefficients for \mathbf{x}

SLIM 🛃

Constructing signals with...

Sparsity

Analysis vs Synthesis

$\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is)

$$\begin{split} \tilde{\mathbf{x}} = \mathbf{D} \cdot \mathop{\mathrm{argmin}}_{\mathbf{Z}} \|\mathbf{z}\|_1 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z} \\ \mathbf{z} \end{split}$$

SLIM 🛃

"Synthesis"-based sparse signal reconstruction

Analysis vs Synthesis

(assume **x** is not sparse, but $\mathbf{D}^{\dagger}\mathbf{x}$ is)

$$\begin{split} \tilde{\mathbf{x}} &= \mathbf{D} \cdot \operatorname*{argmin}_{\mathbf{Z}} \| \mathbf{z} \|_1 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z} \\ \mathbf{z} \end{split}$$

"Synthesis"-based sparse signal reconstruction

Analysis vs Synthesis

(assume **x** is not sparse, but $\mathbf{D}^{\dagger}\mathbf{x}$ is)

$$\tilde{\mathbf{x}} = \underset{\mathbf{X}}{\operatorname{argmin}} \| \mathbf{D}^{\dagger} \mathbf{x} \|_{1} \text{ subject to } \mathbf{y} = \mathbf{A} \mathbf{x}$$

"Analysis"-based sparse signal reconstruction

Synthesis $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname*{argmin}_{\mathbf{Z}} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$

"Synthesizes" the signal using sparse sets of columns of D

Analysis
$$\tilde{\mathbf{x}} = \underset{\mathbf{X}}{\operatorname{argmin}} \|\mathbf{D}^{\dagger}\mathbf{x}\|_{1}$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

"Analyses" the sparsity of the signal under an operator

SLIM 🐣

Synthesis
$$\tilde{\mathbf{x}} = \mathbf{D} \operatorname{argmin}_{\mathbf{Z}} \|\mathbf{z}\|_1$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$

"Synthesizes" the signal using sparse sets of columns of **D**

Analysis
$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \| \mathbf{D}^{\dagger} \mathbf{x} \|_{1}$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

"Analyses" the sparsity of the signal under an operator

40% random missing traces

Recover complete shotrecord using synthesis/ analysis problem

Rel error: 1.7E-01

Rel error: 1.6E-01

Rel error: 1.7E-01

Rel error: 1.6E-01

SLIM 🐣

Equivalence?

If **D** is square and invertible, then synthesis = analysis

If **D** is "flat" and redundant, then not equal

SLIM 🐣

Equivalence?

If **D** is "flat" and redundant, then not equal

Synthesis $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname*{argmin}_{\mathbf{Z}} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$

Analysis $\tilde{\mathbf{x}} = \underset{\mathbf{X}}{\operatorname{argmin}} \|\mathbf{D}^{\dagger}\mathbf{x}\|_{1}$ subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

Analysis-sparsity is a **stronger** condition than Synthesis-sparsity

SLIM 🛃

Equivalence?

Many ways to choose

z s.t. x = Dz

• But there is only one

 $\mathbf{D}^{\dagger}\mathbf{x}$

Rel error: 1.7E-01

Rel error: 1.6E-01

Introducing Cosparsity

Constrains signal to be orthogonal to some number of rows

Sparsity in ${f D}$

SLIM 🛃

Constrains signal to lie on the support of a few number of columns

Introducing Cosparsity

Constrains signal to be orthogonal to some number of rows cosparsity ℓ

SLIM 🛃

Constrains signal to lie on the support of a few number of columns

sparsity k

Introducing Cosparsity

Constrains signal to also be nearly-orthogonal to rows that are lin. dep. with the zero rows

Sparsity in D

SLIM 🛃

Constrains signal to lie on the support of a few number of columns

 ${\scriptstyle \textbf{sparsity}} \ k$

Example: PDE solving

Monochromatic Helmholtz system

$$\min \|s - \mathbf{H}_{x \in x_s} \mathbf{u}\|_2 \quad \text{subject to} \quad \mathbf{H}_{x \notin x_s} \mathbf{u} = 0$$

enforcing non-source position to be zero

Cosparsity results

- uniqueness of solution when recovering from undersampled cosparse signals
- sufficient condition ("ERC-like") for success of L1-Analysis and GAP in reconstructing the above

Cosparsity in MRI

Results: finite difference operator

Observe radial lines in spatial frequency domain

Recover piecewiseconstant image using "TV"

from S. Nam et al., The cosparse analysis model and algorithms, 2012

GAP does not detect "support"

Out of 480617 coefficients:

GAP kept 150951 **(31.4%)** L1-Synthesis kept 49519 **(10.3%)**

(signal size > 0.5% of largest)

GAP does not detect "support"

GAP solution

treating GAP solution as "support"

Trace number

150

200

GAP does not detect "support"

L1-Synth solution

L1-Synth "debiased" solution

Cosparse algorithm

Goal is to pick out the rows of Ω that should be orthogonal to the solution (as many as possible)

Greedy Analysis Pursuit (GAP)

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$ $\Lambda = \{1, 2, 3, \dots, n\}$

- 1. **Projection:** compute $\mathbf{z} = \Omega \mathbf{x}_k$
- 2. Find largest element(s) of z
- 3. Remove the corresponding row(s) from Λ
- 4. Update solution estimate

$$\tilde{\mathbf{x}}_{k+1} = \operatorname*{argmin}_{\mathbf{X}} \|\Omega_{\Lambda} \mathbf{x}\|_2$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

GAP basic outline

$\tilde{\mathbf{x}}_{k+1} = \operatorname*{argmin}_{\mathbf{X}} \|\Omega_{\Lambda} \mathbf{x}\|_2$ subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

obtained by solving least-squares problem

SLIM 🛃

$$\min_{\mathbf{x}} \left\| \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix} - \begin{pmatrix} \mathbf{A} \\ \lambda \mathbf{\Omega} \end{pmatrix} \mathbf{x} \right\|_{2}$$

(adjust λ dynamically based on residual and expected noise level in the data)

$$\tilde{\mathbf{x}}_{k+1} = \underset{\mathbf{X}}{\operatorname{argmin}} \|\Omega_{\Lambda} \mathbf{x}\|_2 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{x}$$

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$

$$\begin{split} \Lambda &= \{1, 2, 3, \dots, n\}\\ \tilde{\mathbf{x}}_0 &= \operatorname*{argmin}_{\mathbf{X}} \|\Omega \mathbf{x}\|_2 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{x}\\ \mathbf{x} \end{split}$$

- 1. Projection: compute $\mathbf{z} = \Omega \mathbf{x}_k$
- 2. Find largest element(s) of z
- 3. Remove the corresponding row(s) from Λ
- 4. Update solution estimate

$$\tilde{\mathbf{x}}_{k+1} = \operatorname*{argmin}_{\mathbf{X}} \|\Omega_{\Lambda} \mathbf{x}\|_2$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

Start with full index set of rows of $\Omega \in \mathbb{C}^{n \times d}$

$$\begin{split} \Lambda &= \{1, 2, 3, \dots, n\}\\ \tilde{\mathbf{x}}_0 &= \operatorname*{argmin}_{\mathbf{X}} \| \Omega \mathbf{x} \|_2 \text{ subject to } \mathbf{y} = \mathbf{A} \mathbf{x} \\ \mathbf{x} \end{split}$$

- 1. Projection: compute $\mathbf{z} = \Omega \mathbf{x}_k$
- 2. Find largest element(s) of z
- 3. Remove the corresponding row(s) from Λ
- 4. Update solution estimate

$$\tilde{\mathbf{x}}_{k+1} = \operatorname*{argmin}_{\mathbf{X}} \|\Omega_{\Lambda} \mathbf{x}\|_2$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

Stop at convergence of $\Delta {\bf x}$, or small $\|\Omega_\Lambda {\bf x}\|_\infty$

Recovery performance

Model error vs computation cost 75% observed traces

Model error vs computation cost 50% observed traces

Model error vs computation cost 25% observed traces

Regularization + Interpolation

Original data

Regularization + Interpolation

Decimated: 15m grid -> 30m grid

Perturbed:

uniformly random trace shift in the range [-8m, +8m] from gridpoint

Regularization + Interpolation

Decimated: 15m grid -> 30m grid

Perturbed:

uniformly random trace shift in the range [-8m, +8m] from gridpoint

Regularization + Interpolation

Histogram of trace irregularity

Regularization + Interpolation

Decimated: 15m grid -> 30m grid

Perturbed:

uniformly random trace shift in the range [-8m, +8m] from gridpoint

Regularization + Interpolation

Decimated: 15m grid -> 30m grid

Perturbed:

uniformly random trace shift in the range [-8m, +8m] from gridpoint

Regularization + Interpolation

- Using non-uniform FFT as measurement operator A (*non-uniform* physical grid -> *uniformly* spaced FK coefficient)
- Curvelet dictionary D constructed from FK domain instead of TX

Regularization + Interpolation

Synthesis (L1) solution using SPGL1

0.4 Time (s) 9.0 0.8 1.0 100 150 200 250 50 Trace number

difference from truth

Regularization + Interpolation

Analysis (LO) "solution" using GAP

difference from truth

Regularization + Interpolation

Regularization + Interpolation 15m -> 3.75m (4 to 1) Synthesis (L1) SPGL1

Regularization + Interpolation15m -> 3.75m (4 to 1)Analysis (LO) GAP

Machar dataset (courtesy BP)

Original Data 25m receiver grid OBC Summed P+Vz Post-processing

Machar dataset (courtesy BP)

Histogram of trace irregularity

Machar dataset (courtesy BP)

Original Data 25m receiver grid OBC Summed P+Vz Post-processing

Machar dataset (courtesy BP)

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved Synthesis (L1) SPGL1

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved Analysis (LO)

SLIM 🛃

GAP

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved Synthesis (L1)

SPGL1

SLIM 🔮

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved Analysis (LO)

GAP

SLIM 🔮

Original Data 25m receiver grid OBC Summed P+Vz Post-processing

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved Synthesis (L1) SPGL1

Regularized + Interpolated 12.5m nominal grid nFFT + 2D Curvelet Sparse regularization Velocity mute Low-freq preserved Analysis (10)

SLIM 🛃

Analysis (LO) GAP

Original Data 25m receiver grid OBC Summed P+Vz Post-processing SLIM 🛃

Time (s)

Summary

- choice of "sparsifying" algorithm is important
- Synthesis problem is not analysis problem

- the *zeroes* of a signal under transforms can be important in regularization
- cosparsity > sparsity for curvelet-domain seismic regularization/interpolation

Constructing signals with...

SLIM 🛃

Cosparsity

Sparsity

Acknowledgements

• All cosparsity theoretical results, along with the GAP algorithm from S.Nam, M. Davies, M. Elad, and R. Gribonval

SLIM 🛃

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.