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Cosparse seismic data interpolation
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What is meant by “sparsity™?

sparsity infers structure



Sparsity infers structure
under transforms
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Sparsity/structure resolves ambiguity

what should go here?
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Curvelets

Curvelet in the space domain Curvelet in the Fourier domain
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Curvelets
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Curvelet synthesis
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Curvelet dictionary is redundant

Size of
physical
Image m

Number of coefficients n



Curvelet dictionary is redundant

Many useful ones also:
- Stationary wavelet
- Windowed Fourier/Cosine
- Ridgelets
- Wave atoms
- Radon
- many more...



Curvelet analysis

Curvelet in the space domain Curvelet in the Fourier domain
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Curvelet analysis
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Curvelet analysis

Curvelet in the space domain Curvelet in the Fourier domain
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Trace interpolation via sparsity

X = Dz (assume xis not sparse, but z is)

x = D - argmin ||z||g subject to y = ADz
Z
o 0-norm measure sparsity (# of non-zero coefficients)

is data with missing traces

o A istrace mask (match data at observed trace positions)
X
y/

<

is estimate interpolated gather
is a choice of curvelet coefficients for x



Trace interpolation via sparsity

X = Dz (assume xis not sparse, but z is)

x = D - argmin ||z||; subject to y = ADz
Z

convexify

o 0-norm measure sparsity (# of non-zero coefficients)

is data with missing traces

« A istrace mask (match data at observed trace positions)
X
Z

<

is estimate interpolated gather
is a choice of curvelet coefficients for x



Constructing signals with...

Sparsity



Analysis vs Synthesis

X = Dz (assume xis not sparse, but z is)

x = D - argmin ||z||; subject to y = ADz
Z

“Synthesis”-based sparse signal reconstruction



Analysis vs Synthesis

(assume X is not sparse, but DTX is)

x = D - argmin ||z||; subject to y = ADz
Z

“Synthesis”-based sparse signal reconstruction



Analysis vs Synthesis

(assume X is not sparse, but DTX is)

% = argmin |D'x||; subject to y = Ax
X

“Analysis”-based sparse signal reconstruction



Equivalence?

Synthesis X = D - argmin ||z||; subject to y = ADz
Z

“Synthesizes” the signal using sparse sets of columns of D

Analysis X = argmin HDTle subject to y = Ax
X

“Analyses” the sparsity of the signal under an operator



Equivalence?

Synthesis X :@ argmin HZH1 subject toy = @
Z

“Synthesizes” the signal using sparse sets of columns of D

Analysis X = argmin H@(Hl subject to y = Ax
X

“Analyses” the sparsity of the signal under an operator



Equivalence?

40% random missing traces
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Recover complete shot-
record using synthesis/
analysis problem
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Time sample
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Equivalence?

If D is square and invertible, then synthesis = analysis



Equivalence?

If D is “flat” and redundant, then not equal



Equivalence?

Not identity

If D is “flat” and redundant, then not equal



Equivalence?

Synthesis X = D - argmin ||z||; subject to y = ADz
Z

Analysis X = argmin HDTle subject to y = Ax
X



Equivalence

Synthesis* =D - argmm |z||; subject to
7 — DTDZ

Analysis = rgmln HDTle subject to y = Ax

Analysis-sparsity is a stronger condition than Synthesis-sparsity



Equivalence?

e Many ways to choose

7 s.t. x = Dz

e But there is only one

D'x
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Infroducing Cosparsity

Cosparsity in {2

/

Constrains signal to be
orthogonal to some
number of rows

S. Nam et al., The cosparse analysis model and algorithms, 2012

Sparsity in D

1L

\

Constrains signal to lie
on the support of a few
number of columns




Infroducing Cosparsity

Cosparsity in {2 Sparsity in D

1L

\

/
Constrains signal to lie
Constrains signal to be on the support of a few

orthogonal to some f columns
f rOWS

sparsity k

cosparsity ¢

S. Nam et al., The cosparse analysis model and algorithms, 2012



Infroducing Cosparsity

Cosparsity in {2 Sparsity in D

SNE:

\

Constrains signal to lie
on the support of a few

be nearly-orthogonal to
. f columns
rows that are lin. dep.

with the zero rows sparsity k

/

Constrains signal to also

S. Nam et al., The cosparse analysis model and algorithms, 2012



Example: PDE solving

Monochromatic Helmholtz system
min ||s — Hye, ull2  subject to Hyg, u=10

enforcing non-source
position to be zero



Cosparsity results

e unigqueness of solution when
recovering from undersampled
cosparse signals

o sufficient condition (“ERC-like”) for
success of L1-Analysis and GAP in
reconstructing the above

S. Nam et al., The cosparse analysis model and algorithms, 2012



Recover piecewise-

Observe radial
constant image

lines in spatial

frequency domain using “TV”
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GAP does not detect “support”

Out of 480617 coefficients:

GAP kept 150951 (31.4%)
L1-Synthesis kept 49519 (10.3%)

(signal size > 0.5% of largest)
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GAP does not detect “support”
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L1-Synth solution L1-Synth “debiased” solution



Cosparse algorithm

Goal is to pick out the rows of €2
that should be orthogonal to the
solution (as many as possible)

Greedy Analysis Pursuit (GAP)

S. Nam et al., The cosparse analysis model and algorithms, 2012




GAP basic outline

Start with full index set of rows of Q € C™*¢
A={1,2.3,... n)

1. Projection: compute z = ()X
2. Find largest element(s) of z

3. Remove the corresponding row(s) from A

4. Update solution estimate

X111 = argmin ||[2px||2 subject to y = Ax
X



GAP basic outline

Xk4+1 = argmin ||£2ax||2 subject to y = Ax
X



GAP basic outline

obtained by solving least-squares problem

w(5)-(a ),

(adjust A dynamically based on residual and

expected noise level in the data)

X111 = argmin ||[2px||2 subject to y = Ax
X



GAP basic outline

Start with full index set of rows of 2 € C™*¢
A={1,2,3,....n)

Xo = argmin ||2x||5 subject to y = Ax
X

1. Projection: compute z = ()X
2. Find largest element(s) of z

3. Remove the corresponding row(s) from A

4. Update solution estimate

X111 = argmin ||[2px||2 subject to y = Ax
X



GAP basic outline

Start with full index set of rows of 2 € C™*¢
A={1,2,3,....n)

Xo = argmin ||2x||5 subject to y = Ax
X

1. Projection: compute z = ()X
2. Find largest element(s) of z

3. Remove the corresponding row(s) from A

4. Update solution estimate

X111 = argmin ||[2px||2 subject to y = Ax
X

Stop at convergence of Ax, or small||24X|| oo



Recovery performance
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Model error vs computation cost
75% observed fraces

09r
°o o o O SPGL1
© ° o O  GAP
0.8p ° o
b . ) O Synth NESTA
S . O Analy NESTA
0.7 ’ O  StOMP

o o o o
w IN o o))

relative 2—-norm of model error

o
N

0.1

0 I I I I I ‘) I I I J

100 200 300 400 500 600 700 800 900 1000
number of products with operator (excl. adjoint)




Model error vs computation cost
50% observed traces
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Model error vs computation cost
25% observed traces

relative 2—-norm of model error
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Regularization + Interpolation

Original data




Regularization + Interpolation
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15m grid -> 30m grid

Perturbed:

uniformly random
trace shift in the range
[-8m, +8m] from
gridpoint



Regularization + Interpolation
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Histogram of trace irregularity

Fold
N

_4 2 0 2 4 6 8

Perturbation from gridpoint (m) + 8



Regularization + Interpolation
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Regularization + Interpolation

Decimated:
15m grid -> 30m grid

Perturbed:

uniformly random
trace shift in the range
[-8m, +8m] from
gridpoint



Regularization + Interpolation

e Using non-uniform FFT as measurement
operator A
(non-uniform physical grid -> uniformly
spaced FK coefficient)

e Curvelet dictionary D constructed from FK
domain instead of TX



Regularization + Interpolation

Synthesis (L1) solution using SPGL1 difference from truth
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Regularization + Interpolation

Analysis (LO) “solution” using GAP difference from truth
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Regularization + Interpolation

original NFFT Synthesis (L1) SPGL1 Analysis (LO) GAP

Frequency (Hz)




Regularization + Interpolation
15m ->3.75m (4 to 1) Synthesis (L1) SPGL1
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Regularization + Interpolation
15m ->3.75m (4 to 1) Analysis (LO) GAP
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Machar dataset (courtesy BP)
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Machar dataset (courtesy BP)

Regularized +

Interpolated

12.5m nominal grid
NFFT + 2D Curvelet
Sparse regularization
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Machar dataset (courtesy BP)
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Machar dataset (courtesy BP)
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Machar dataset (courtesy BP)

Regularized +

Interpolated

12.5m nominal grid
NFFT + 2D Curvelet
Sparse regularization
Velocity mute
Low-freq preserved

Analysis (LO)
GAP

Time (s)

50 100 150 200 250 300 350 400 450 500 550
Trace number



Time (s)

Machar dataset (courtesy BP)

Original Data
25m receiver grid
OBC

Summed P+Vz
Post-processing

50 100 150 200 250
Trace number



Machar dataset (courtesy BP)
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Machar dataset (courtesy BP)
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Summary

o choice of “sparsifying” algorithm is
Important

e Synthesis problem is not analysis problem

o the zeroes of a signal under transforms can
be important in regularization

e cosparsity > sparsity for curvelet-domain
seismic regularization/interpolation



Constructing signals with...

Cosparsity

Sparsity
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