Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

#### **Extended** images in action

#### Tristan van Leeuwen, Rajiv Kumar & Felix Herrmann



## Motivation

Computation of *full*-subsurface offset volumes is computationally *prohibitively* expensive (storage & computation time)

SLIM 🛃

Full-subsurface offset volumes allow us to conduct

#### MVA

AVA w/ geologic dip corrections

using information from *all* directions.

Use probing techniques we used successfully in FWI...

SLIM 🔶

## Migration-velocity analysis

- find *starting* model for FWI?
- *invert* kinematic errors in *image* volumes





[Biondo & Symes, '04 ;Sava & Vasconcelos, '11]



SLIM 🔮

but.... we can *never* hope to *compute* or *store* such an *extended* image volume! Can we work with the *extended* volume *implicitly* ?

SLIM 🛃

## Overview

- Anatomy
- Physics
- Computation
- Applications:
  - 1.AVA
  - 2.MVA
- Conclusions

## Anatomy

$$e(\omega, \mathbf{x}, \mathbf{x}') = \sum_{i} u_i(\omega, \mathbf{x}) v_i(\omega, \mathbf{x}')^*$$

SLIM 🔮

- Organize wavefields in monochromatic data matrices
- *Express* image volume *tensor* as *matrix*

$$E = UV^*$$



SLIM 🐣



SLIM 🛃

#### example for one layer



#### full matrix



#### one column



**Extended images** diagonal



## Double wave-equation

*Helmholtz* operator:  $H = \omega^2 \operatorname{diag}(\mathbf{m}) + \nabla^2$ 

source/receiver wavefields:  $HU = P_s^T Q$   $H^*V = P_r^T D$ *RTM extended* image:  $E = UV^*$ 

yields:  $HEH = P_s^T Q D^* P_r$ 

## **\_ Double wave-equation**

$$Le(\omega, \mathbf{x}, \mathbf{x}') = \int d\mathbf{s} \int d\mathbf{r} \, d(\omega, \mathbf{s}, \mathbf{r}) \delta(\mathbf{x} - \mathbf{s}) \delta(\mathbf{x}' - \mathbf{r})$$
  
*two*-way:

$$L = \left[\omega^2 / c(z, x)^2 + \partial_x^2 + \partial_z^2\right] \left[\omega^2 / c(z') x')^2 + \partial_{x'}^2 + \partial_{z'}^2\right]$$

one-way (DSR):  

$$L = \left[ \partial_z - i \sqrt{\omega^2/c(z,x)^2 + \partial_x^2} - i \sqrt{\omega^2/c(z,x')^2 + \partial_{x'}^2} \right]$$

[Claerbout, '84; Stolk & de Hoop '01]

complete image volume too
 large to form: (n<sub>x</sub> x n<sub>z</sub>)<sup>2</sup>

SLIM

- instead, probe volume for information via mat-vecs Ey
- y can be interpreted as subsurface (sim.) *source* function

*mat-vec* with *extended* image:

$$\mathbf{e} = E\mathbf{y} = H^{-1}P_s^T Q D^* P_r H^{-1}\mathbf{y}$$

- $\widetilde{\mathbf{d}} = P_r H^{-1} \mathbf{y}$  (one subsurface source)
- $\widetilde{\mathbf{w}} = D^* \widetilde{\mathbf{d}}$
- $\mathbf{e} = H^{-1} P_s^T Q \widetilde{\mathbf{w}}$

(source weights) (one source) SLIM 🔮

Are able to compute *full*-subsurface image gathers

- w/o looping over all sources
- derives from reciprocity principle
- probe image space w/ arbitrary test functions
  - point scatterers (one at location of subsurface point)

SLIM 🛃

Gaussian weights (simultaneous source)

#### computation of an *image point gather*

|              | # of PDE solves | "flops for correlations"        |
|--------------|-----------------|---------------------------------|
| conventional | 2Ns             | N <sub>s</sub> x N <sub>h</sub> |
| mat-vecs     | 2               | N <sub>s</sub> x N <sub>r</sub> |

- $N_{s}\xspace$   $\#\xspace$  of sources
- N<sub>r</sub> # of receivers
- $N_{\rm h}$  # of subsurface offsets

#### align subsurface offset with local dip

SLIM 🛃



 $\Delta x$ 

SLIM 🔮

 compute *image*-point gather
 determine dip
 extract *offset* along *dip Radon* transform to compute angle gather

SLIM 🛃

#### example



SLIM 🛃 **Dip-angle gathers** 0 0.2 0.4 0 0.6 0.2 0.8 0.4 1 0 10.6 0.5 0.8 1 0 0.5 1.5 2 1 0.6 0.8 1⊾ 0 0.5 1.5 2 1

**Dip-angle gathers** *angle* gathers for *correct* velocity, should all be *flat* 





the *dip* can be *detected* by measuring the *stackpower* normal to the *dip* 



#### AVA

## *amplitude* behavior of *angle* gathers can be used for *AVA*



SLIM 🐣

AVA



AVA



Focusing in  $\Delta x$  implies a commutation relation:  $x \cdot f(x, x') = x' \cdot f(x, x')$ or  $E \operatorname{diag}(\mathbf{x}) = \operatorname{diag}(\mathbf{x})E$  SLIM 🛃

Measure the error in some norm

 $||E\operatorname{diag}(\mathbf{x}) - \operatorname{diag}(\mathbf{x})E||_?^2$ 

[Symes '08]

# The *Frobenius* norm can be estimated via *randomized* trace estimation:

$$\begin{split} ||A||_{F}^{2} &= \mathsf{trace}(A^{T}\!A) \\ &\approx \sum_{i=1}^{K} \mathbf{w}_{i}^{T} A^{T}\!A \mathbf{w}_{i} = \sum_{i=1}^{K} ||A \mathbf{w}_{i}||_{2}^{2} \\ \\ & \mathsf{where} \ \sum_{i=1}^{K} \mathbf{w}_{i} \mathbf{w}_{i}^{T} \approx I \end{split}$$

SLIM 🛃

[Avron & Toledo, '11]

#### objective and gradient

$$\phi(\mathbf{m}) = \sum_{k} \frac{1}{2} ||R(\mathbf{m})\mathbf{w}_{k}||_{2}^{2}$$

$$\nabla \phi(\mathbf{m}) = \sum_{k} DR(\mathbf{m}, \mathbf{w}_{k})^{*}R(\mathbf{m})$$
where

 $R(\mathbf{m}) = E(\mathbf{m}) \operatorname{diag}(\mathbf{x}) - \operatorname{diag}(\mathbf{x})E(\mathbf{m})$  $DR(\mathbf{m}, \mathbf{w}) = \frac{\partial R\mathbf{w}}{\partial \mathbf{m}}$ 

SLIM 🐣



Lens Model



**Initial Model** 



SLIM 🕀

Lens Model





Lens Model

![](_page_36_Figure_1.jpeg)

#### horizontal trace

#### vertical trace

![](_page_37_Figure_3.jpeg)

#### Summary

Use *full* subsurface offsets, no need to estimate *dips* a *priori*

- *Probe* image volume with *mat-vecs*
- estimate dip *automatically*
- *Suitable* for AVA
- Use techniques form *randomized* trace estimation to compute MVA penalty