Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Compressed sensing, recovery of signals using random Turbo matrices

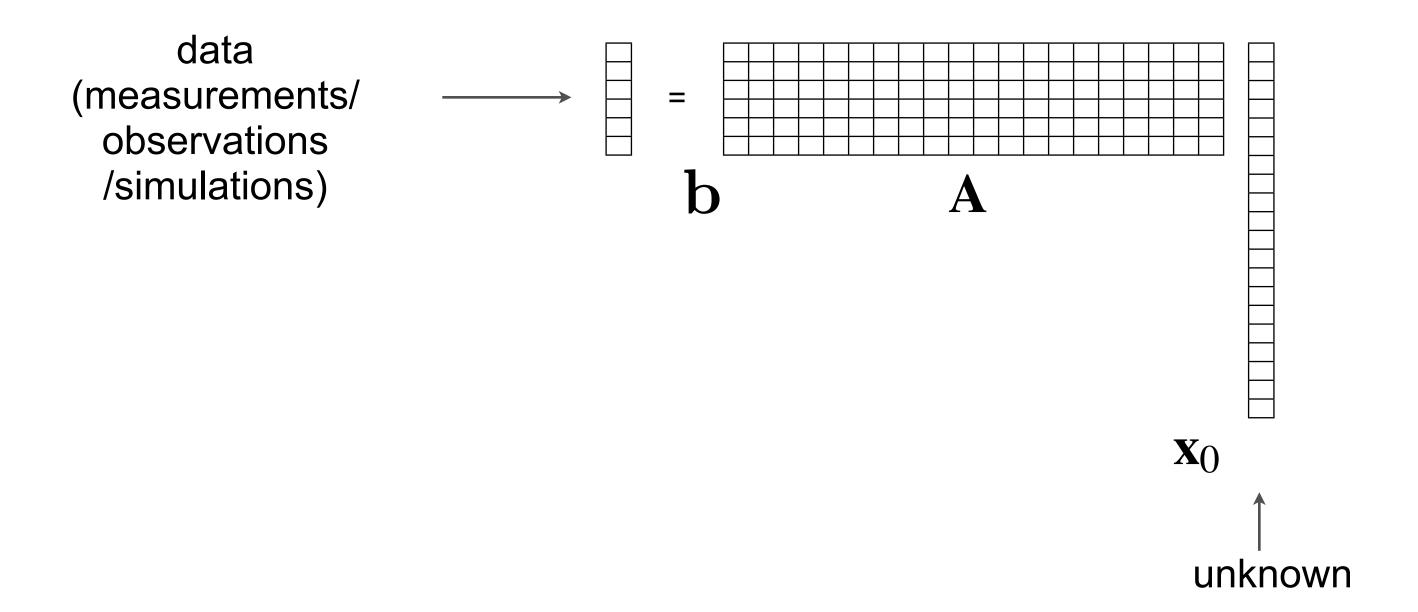
Enrico Au-Yeung
(Joint work with Ozgur Yilmaz)

Introduction

Compressed sensing is a powerful technique to reconstruct sparse data.

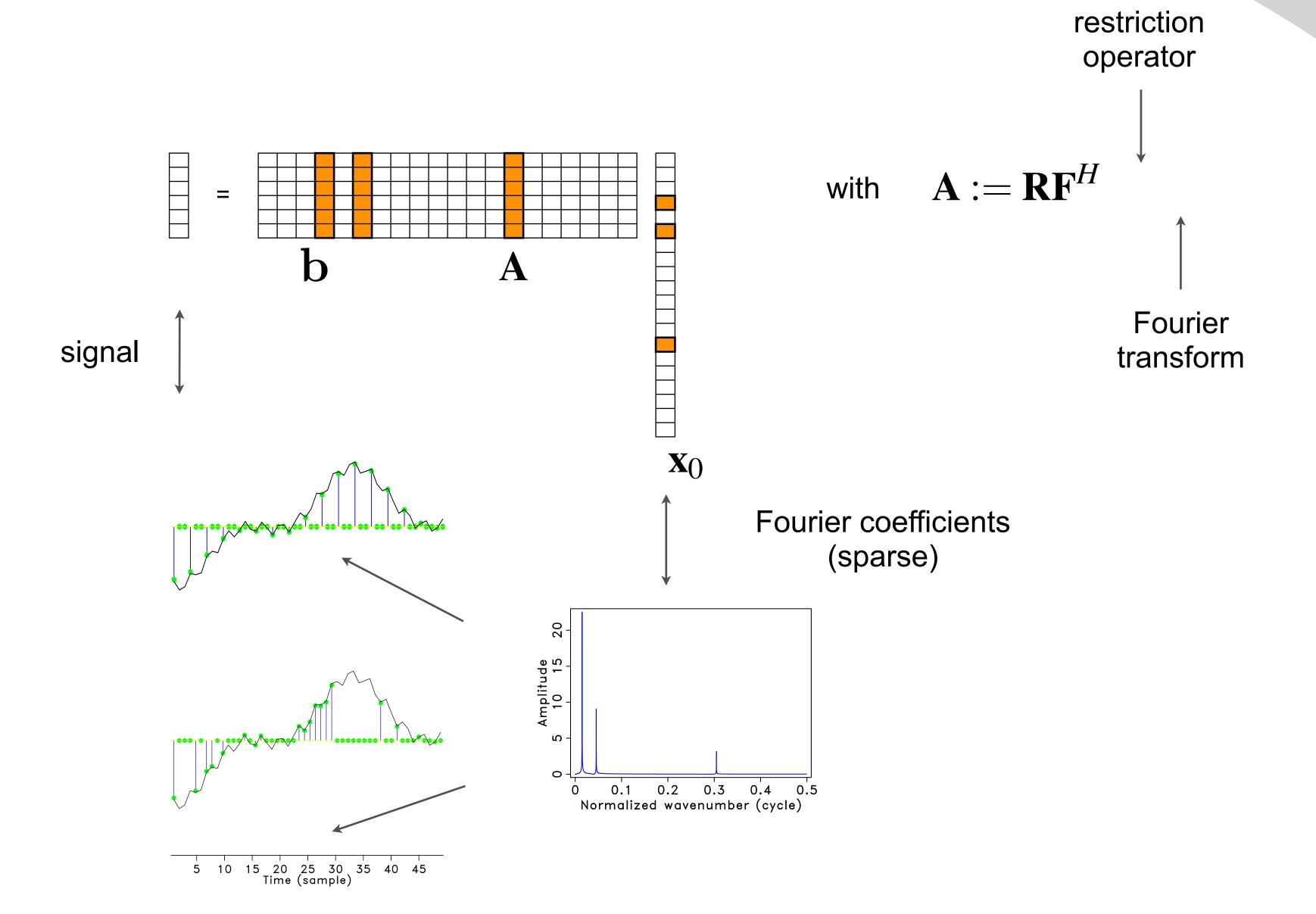
- Can we do better than using Gaussian matrix?
- What do we mean by better results?

Consider the following (severely) underdetermined system of linear equations:

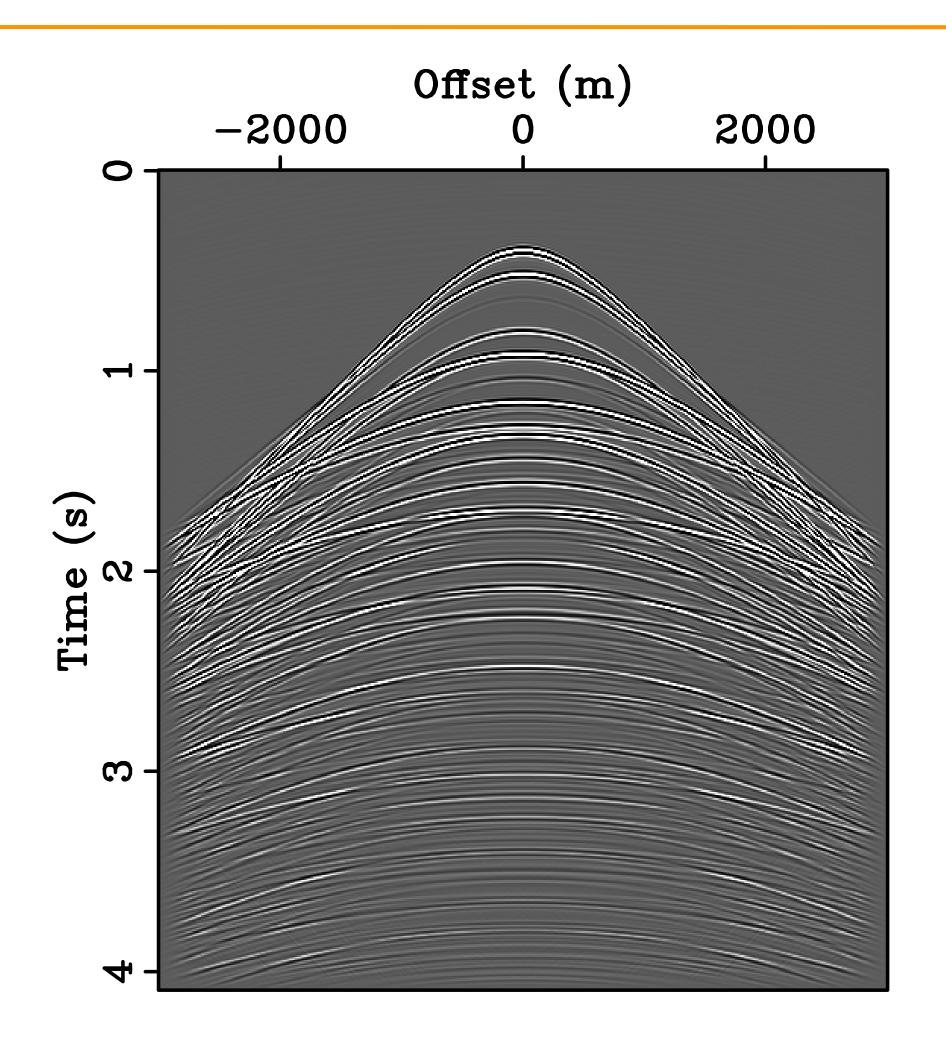


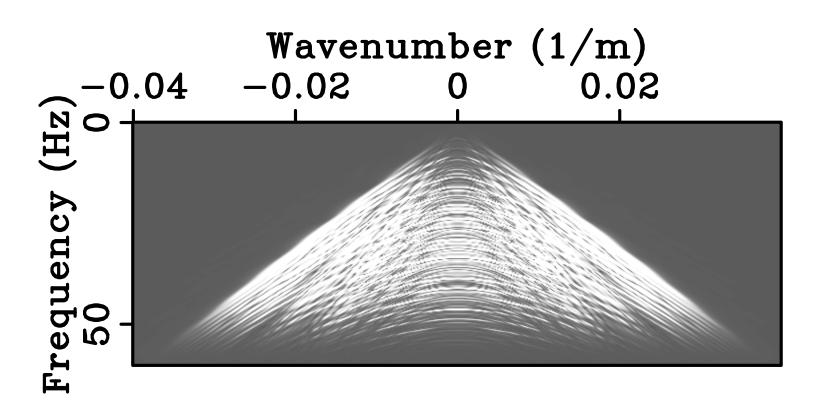
Is it possible to recover \mathbf{x}_0 accurately from \mathbf{b} ?

Compressed Sensing attempts to answer this questions rigorously.

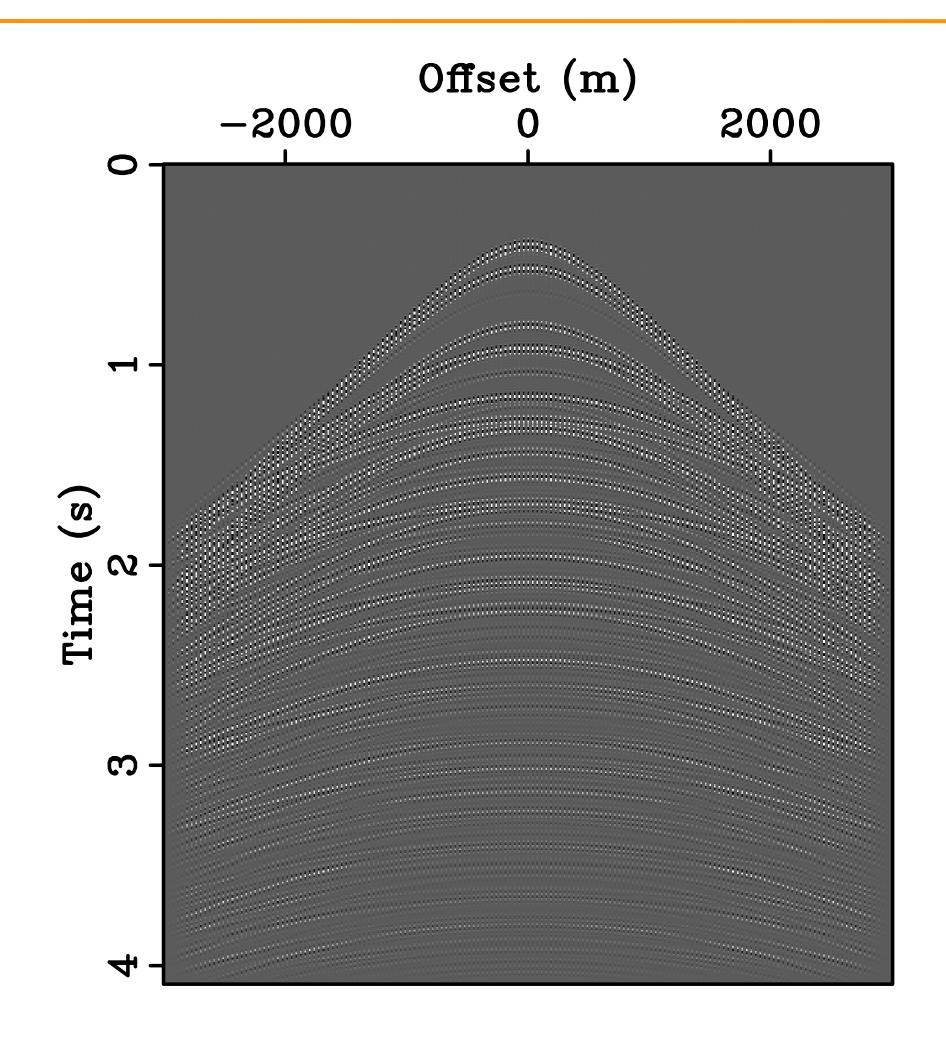


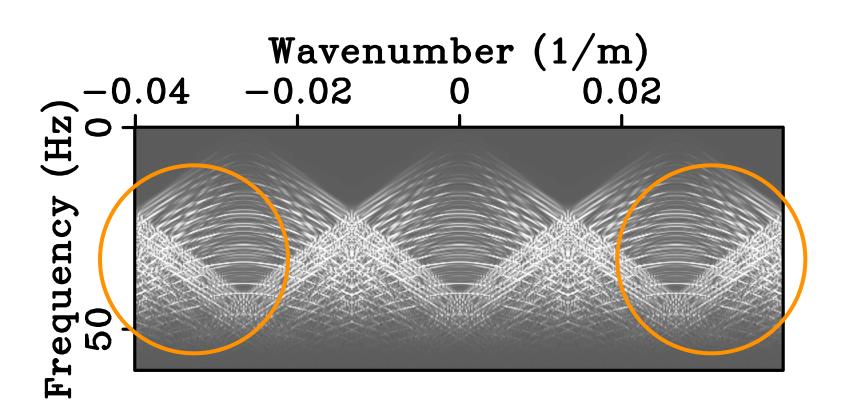
Model



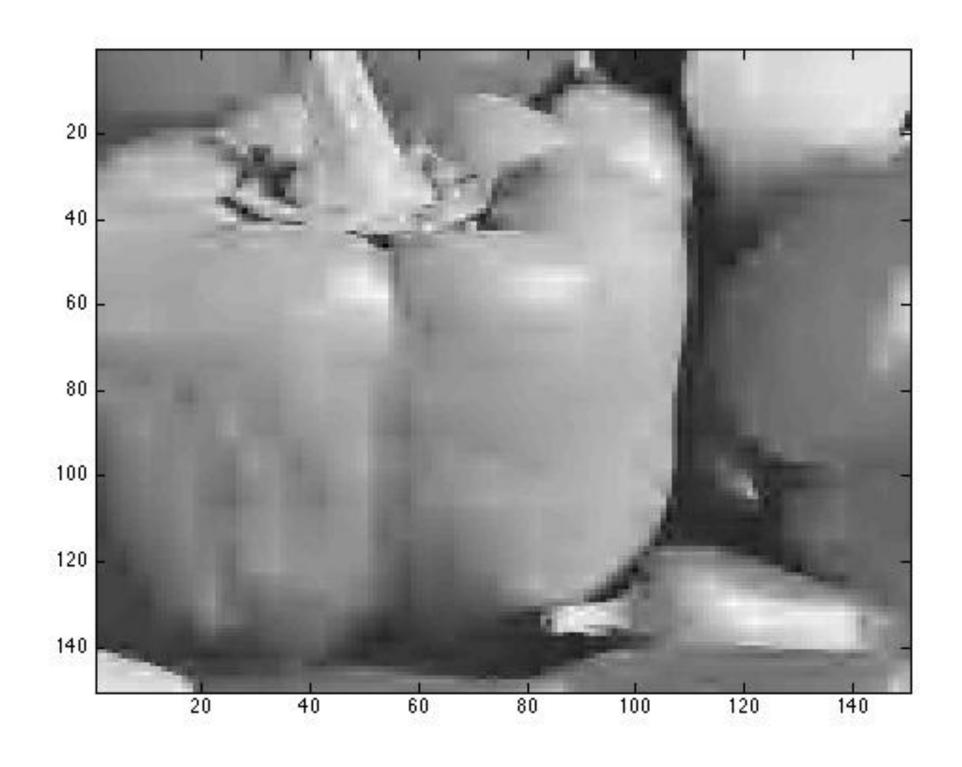


Regular 3-fold undersampling





Repper (10% sparsity)



Throw away
90% of the
wavelet
coefficients

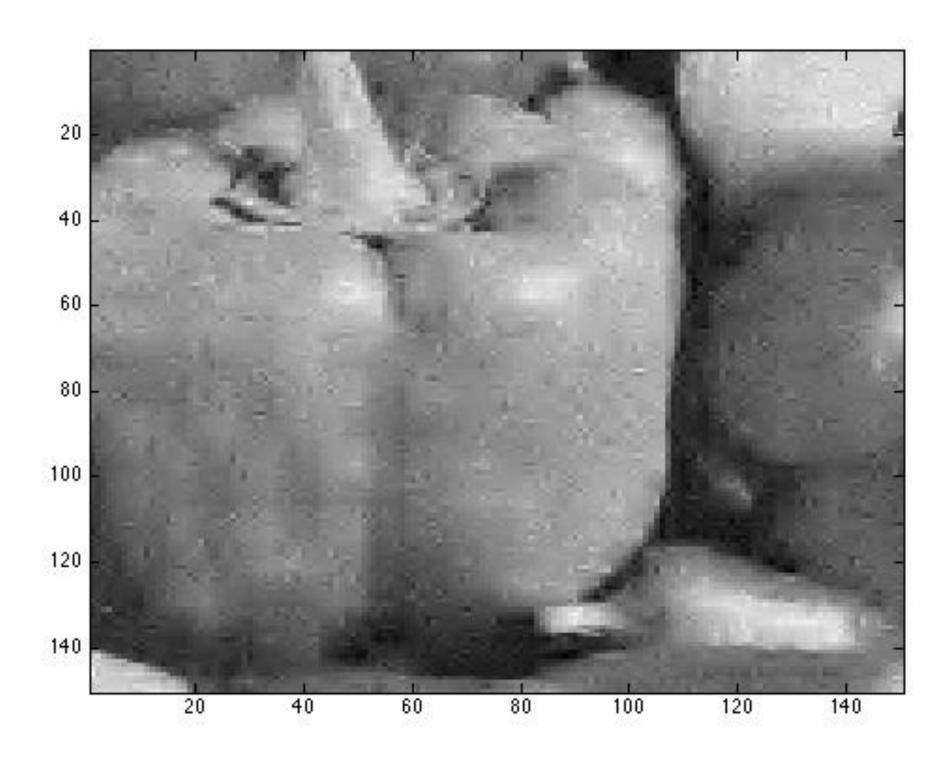
House

Original

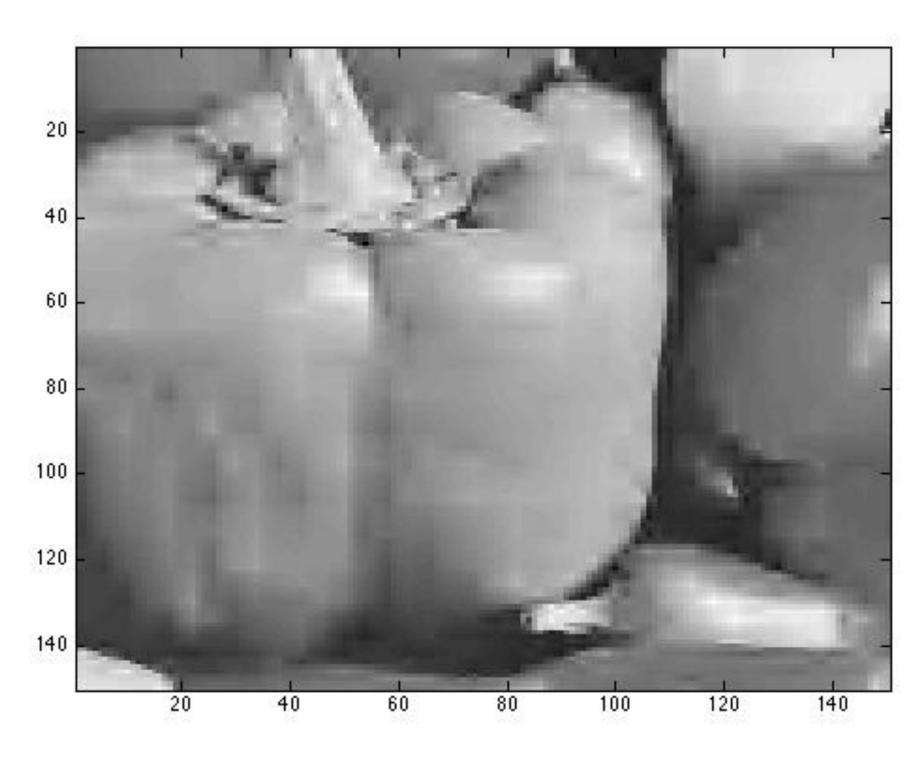
Sparse

Why collect all the data?

25% of data



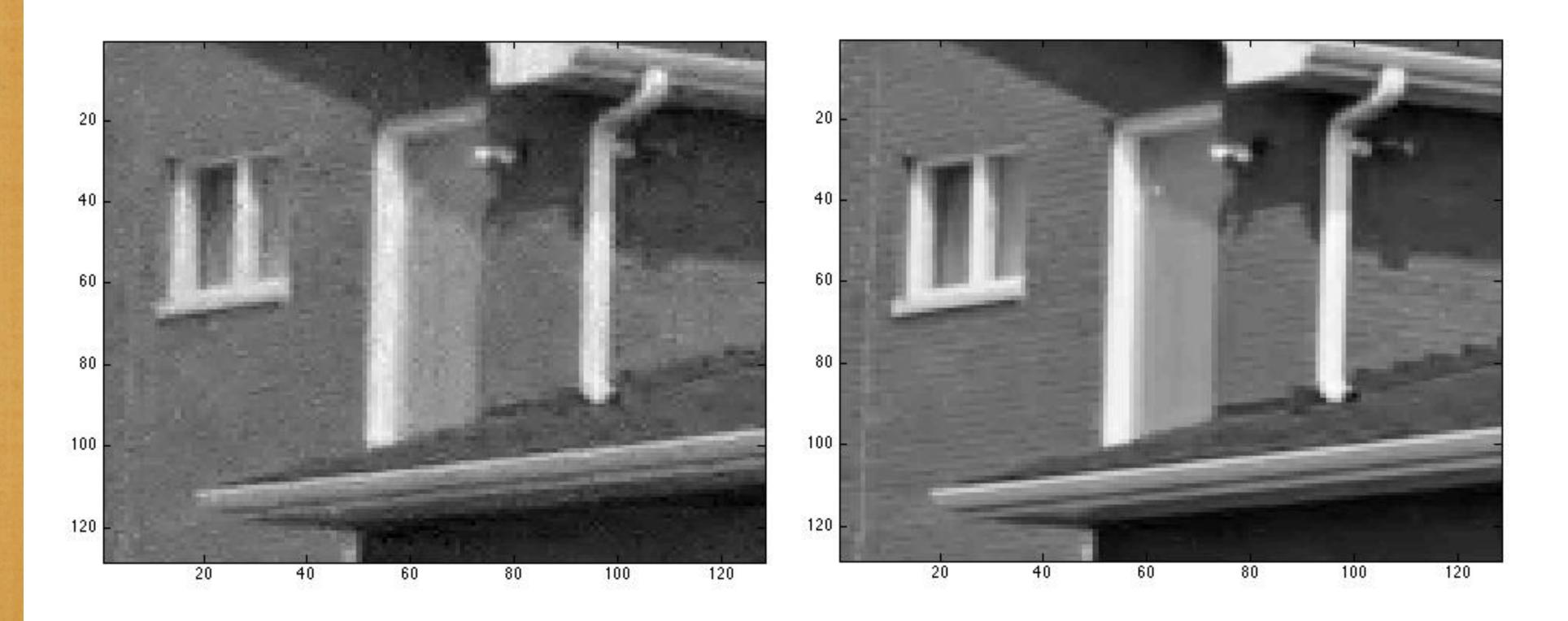
100% of data



SNR = 21

20% of data

100% of data



SNR = 25.8

Sparse

Compressed sensing

How many measurements do we need to make? Far less than what Shannon tells us.

$$y = Ax$$

x is a vector in \mathbb{R}^N

y is a vector in \mathbb{R}^n

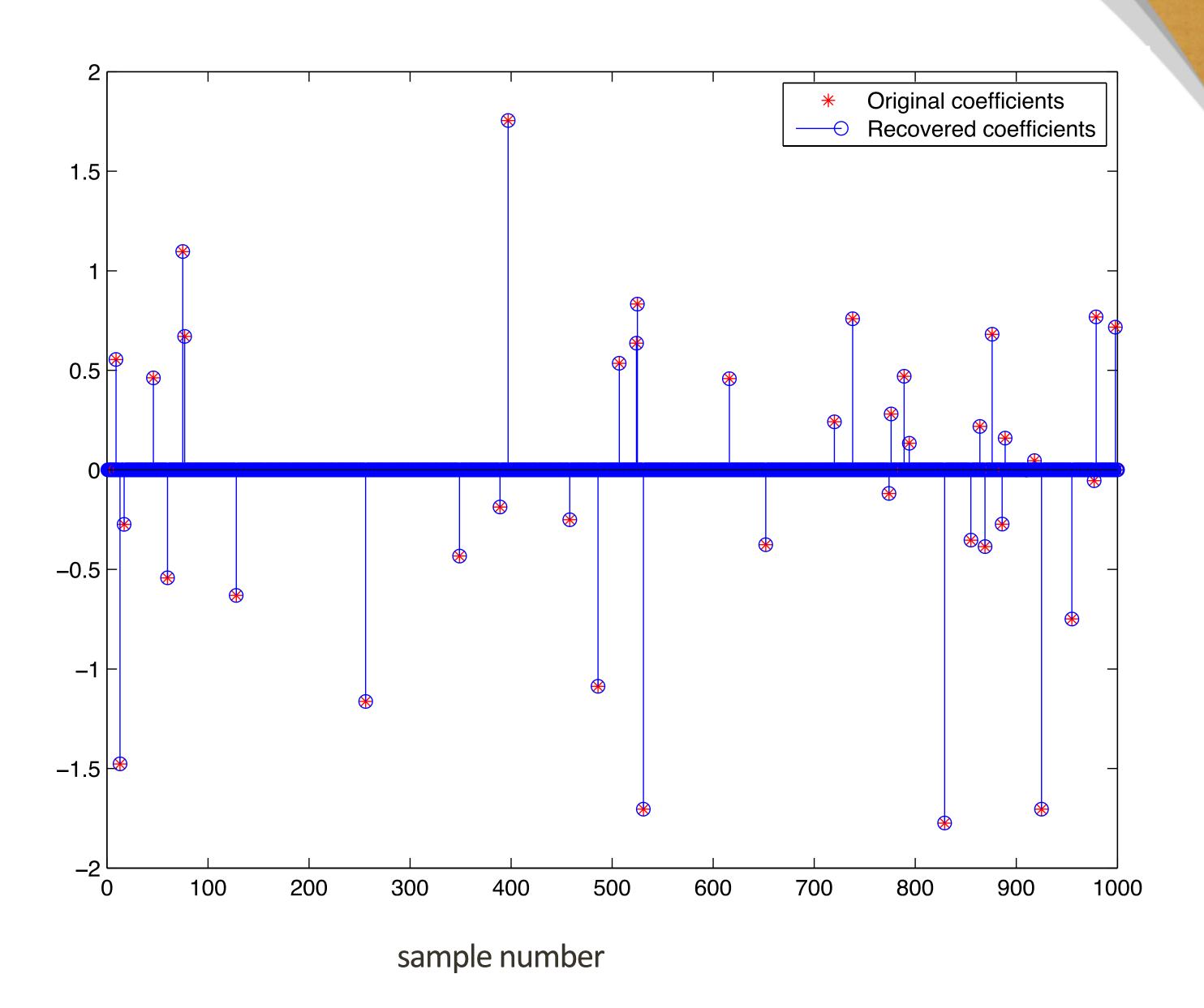
y is observation

A is a measurement matrix

A has n rows and N columns, where $n \ll M$.

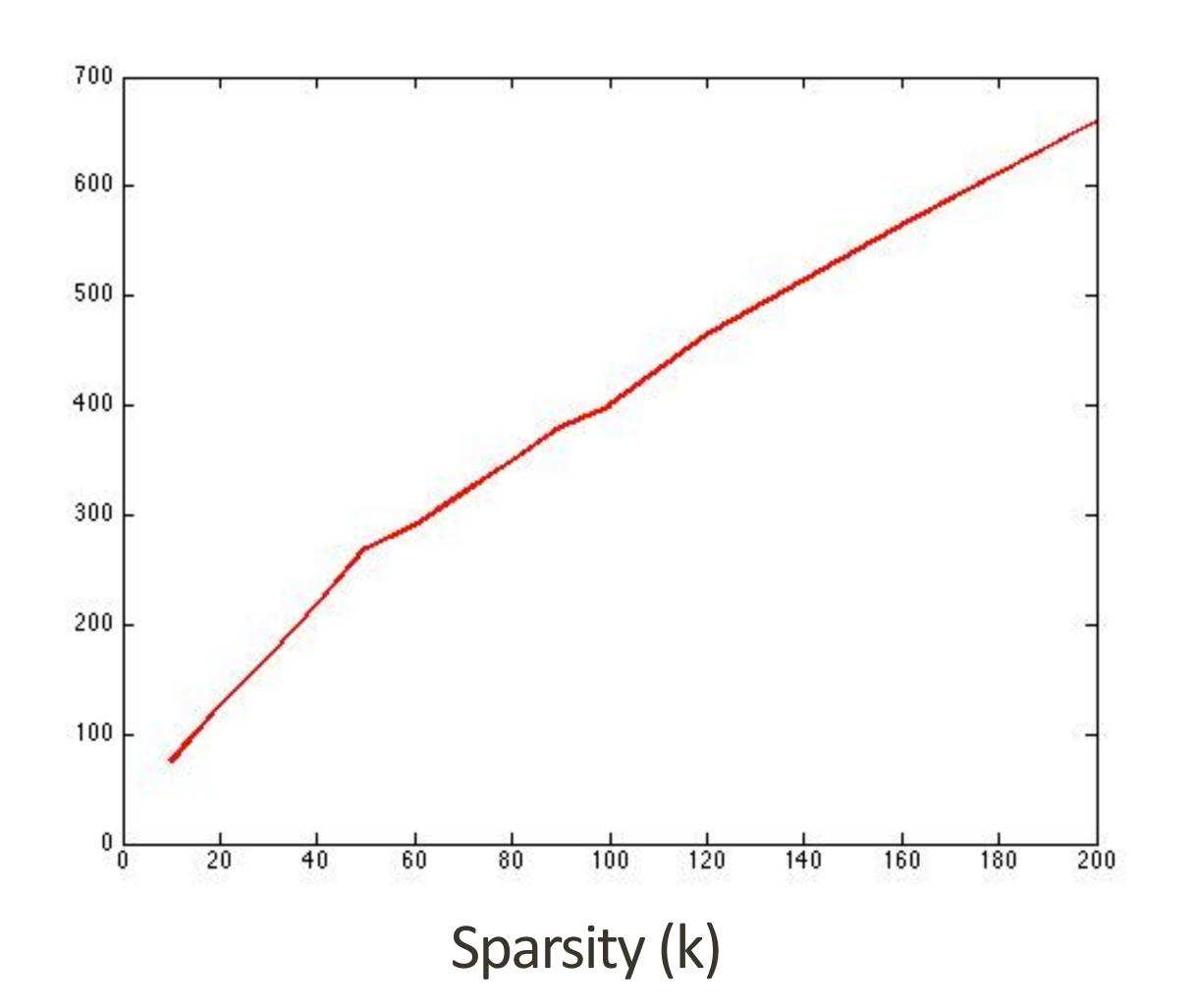
Recovery of sparse signal

N = 1000 n = 200 k-sparse k = 40



How many measurements?

Number of measurements needed



N = 2000 k-sparse

Sparsity

• Compressed sensing can be applied when a signal is sparse.

What if you do not collect enough samples?
 (Below required minimum)

When you are seriously under-sampling, there will be reconstruction error.

But a signal may not be as random as we thought.

zero here

not zero here

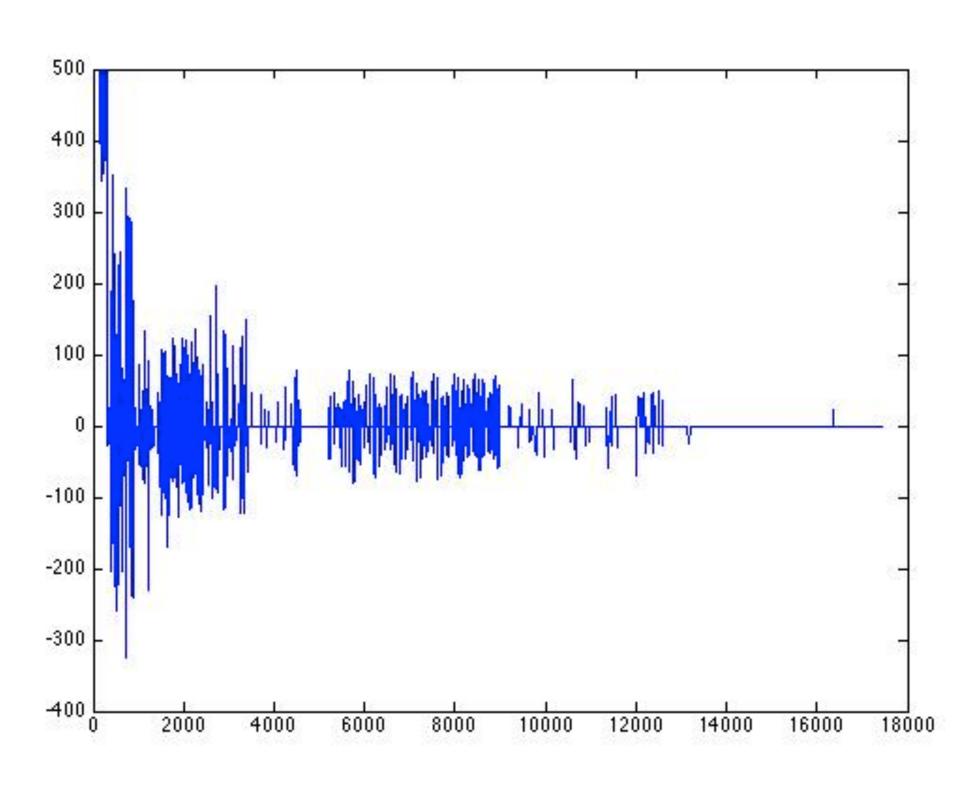
not zero here

zero here

x (signal)

sparsity of house

wavelet coefficients



sample number

Measurement matrix

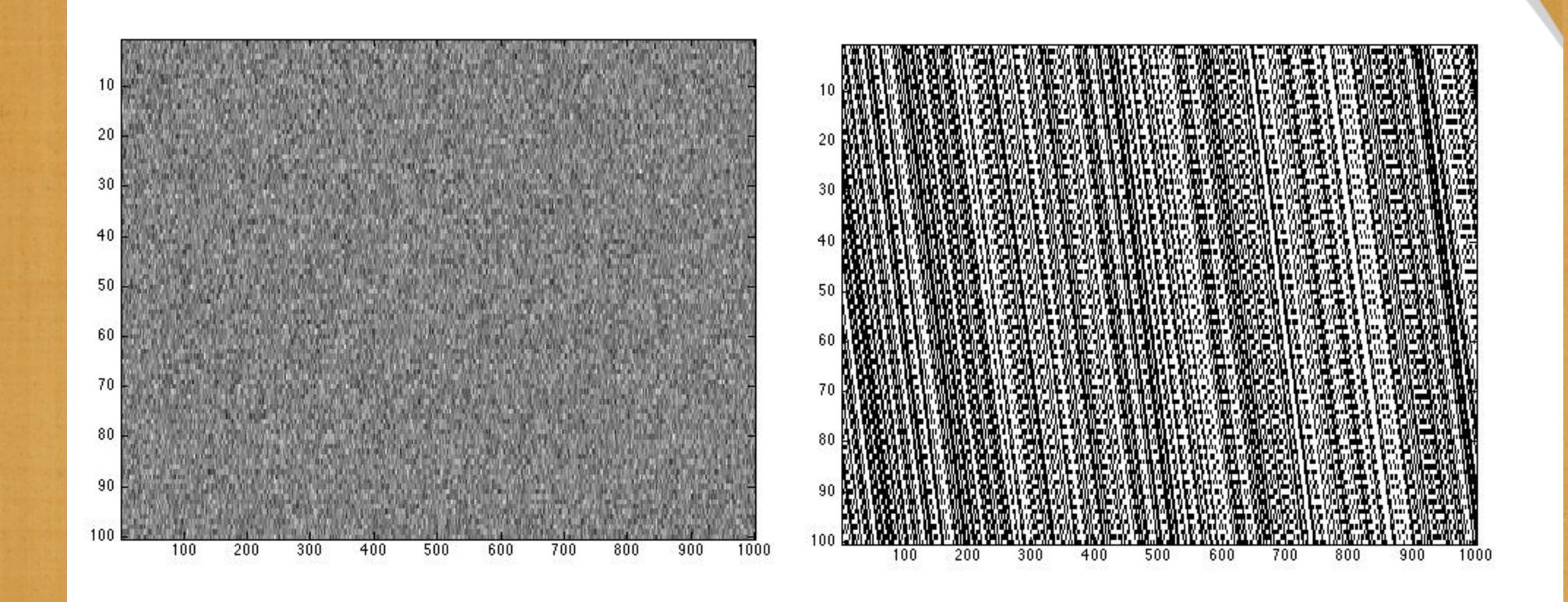
$$y = Ax$$
 A is a matrix

The matrix satisfies the RIP property: nearly preserve length of sparse vectors.

Turbo matrix has some structure.

Gaussian matrix has no structure.

Gaussian vs Turbo

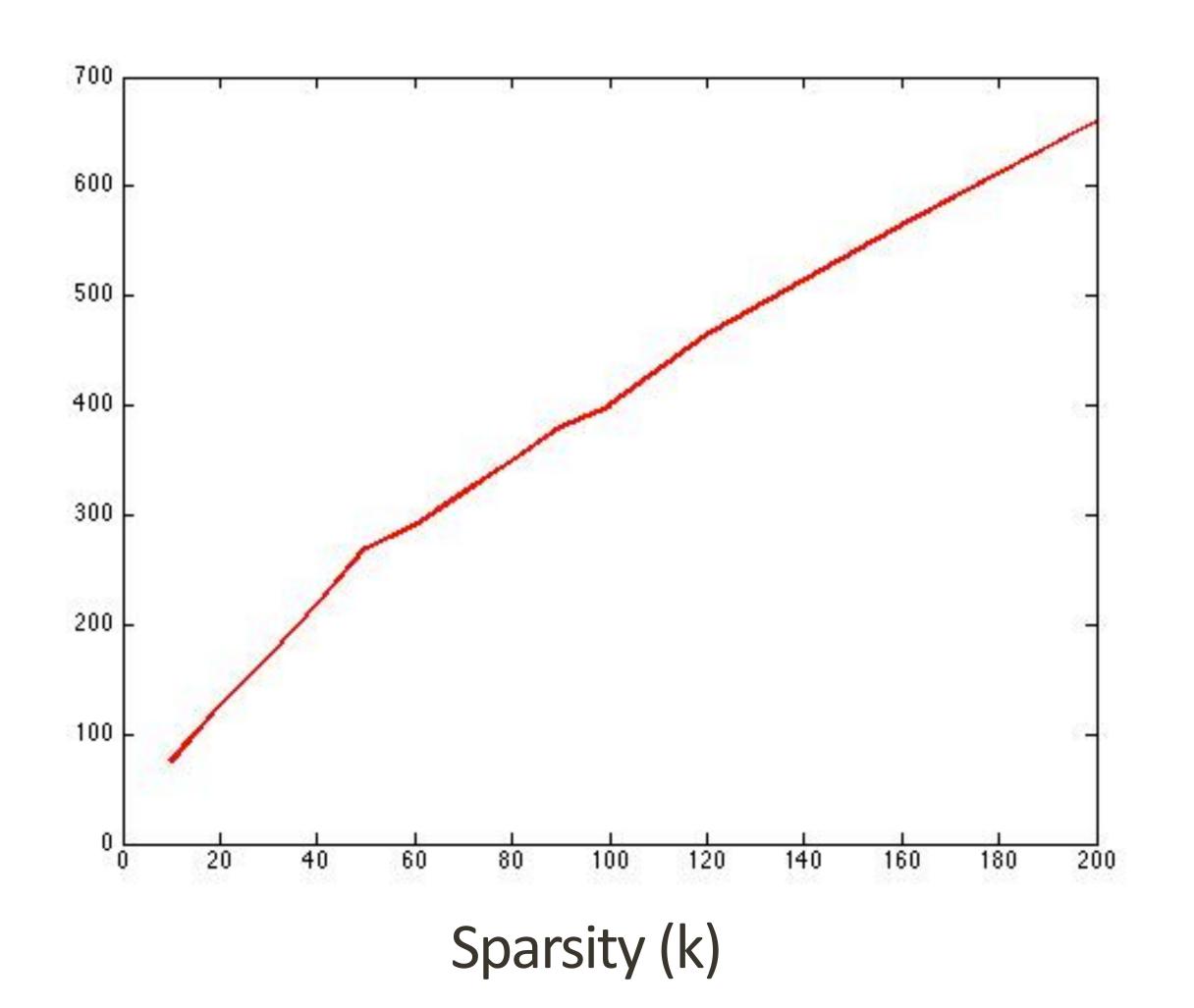


no structure

some structure

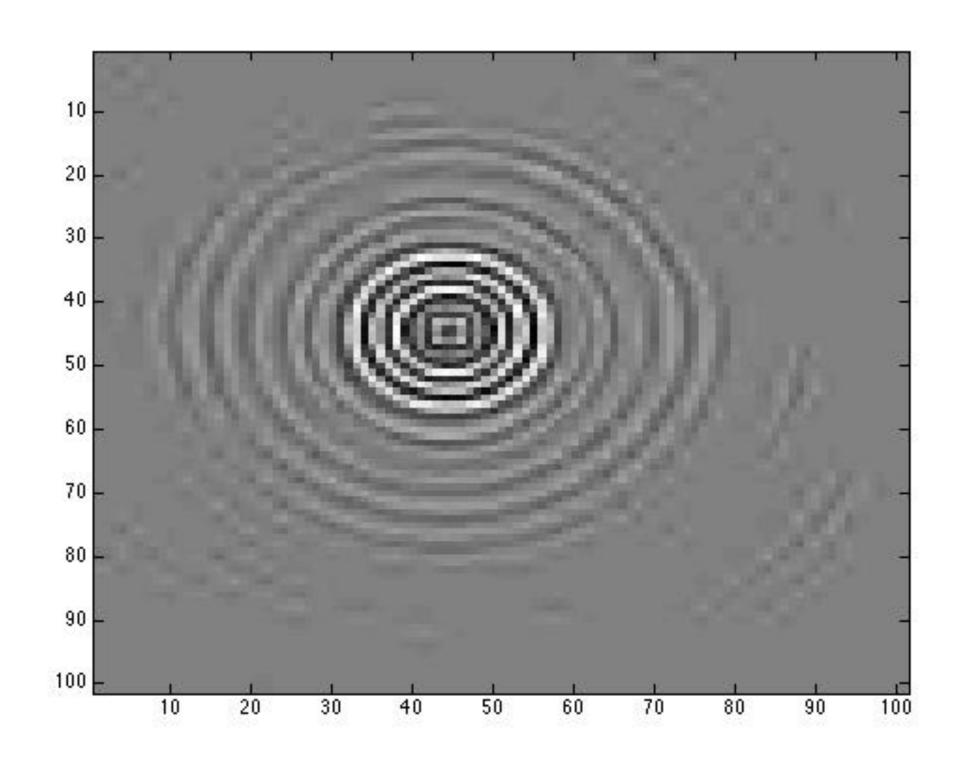
How many measurements?

Number of measurements needed



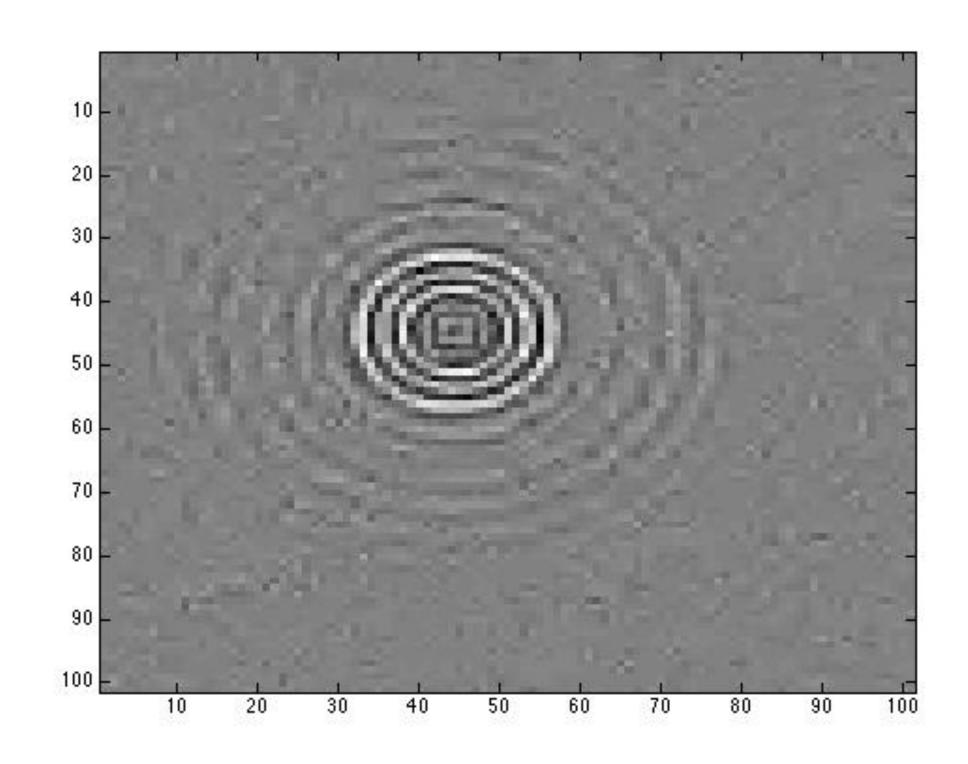
N = 2000 k-sparse

BG data (10% sparsity)



Throw away
90% of the
wavelet
coefficients

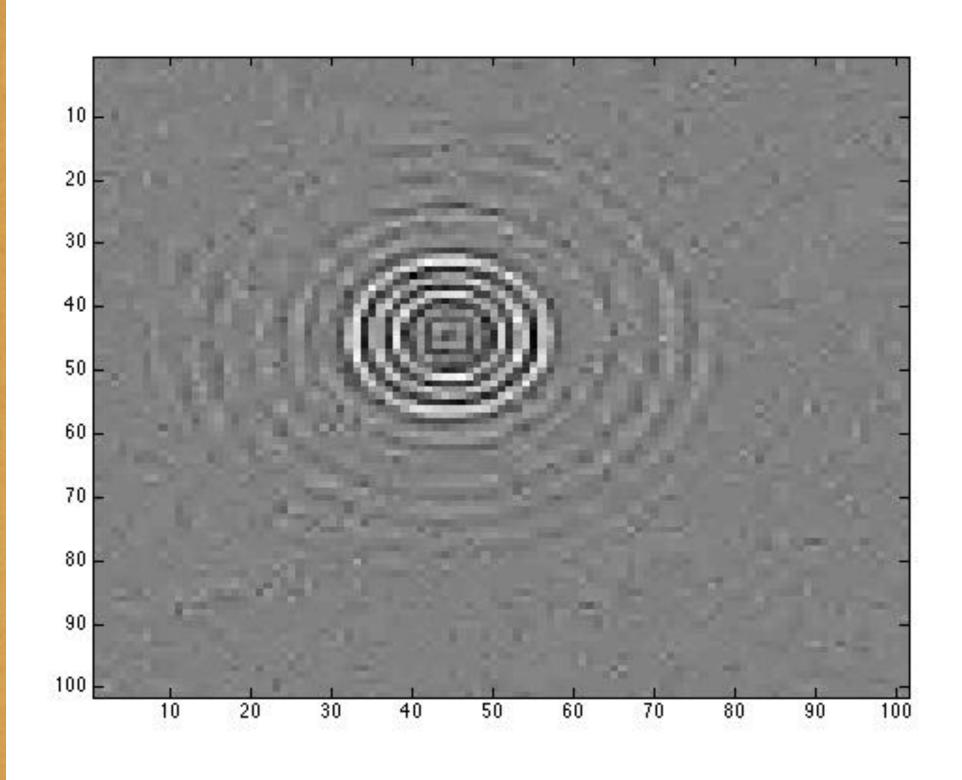
BG data (10% sparsity)

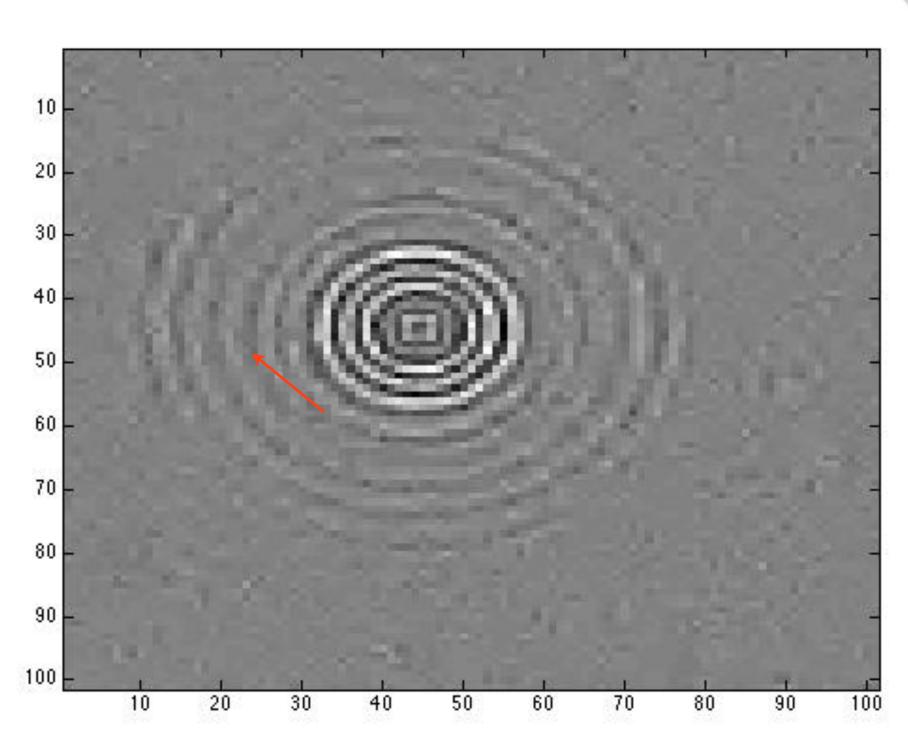


Throw away
90% of the
wavelet
coefficients

2.5 X sparsity(Under-sampling)

Gaussian vs Turbo





$$SNR = 6.1$$

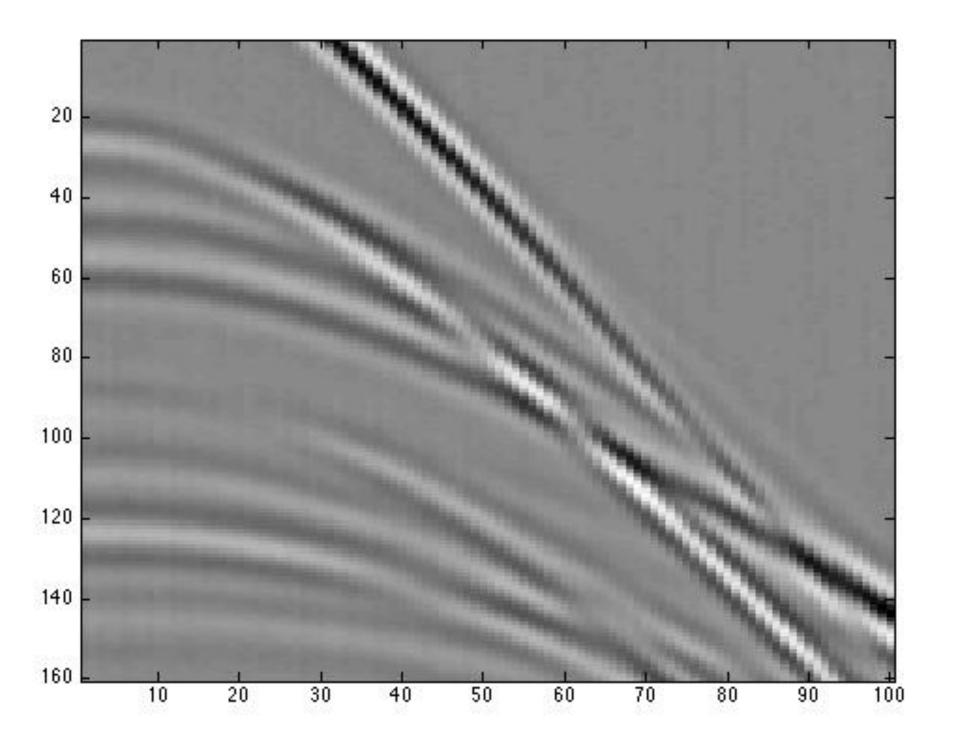
$$SNR = 7.2$$

2.5 X Sparsity

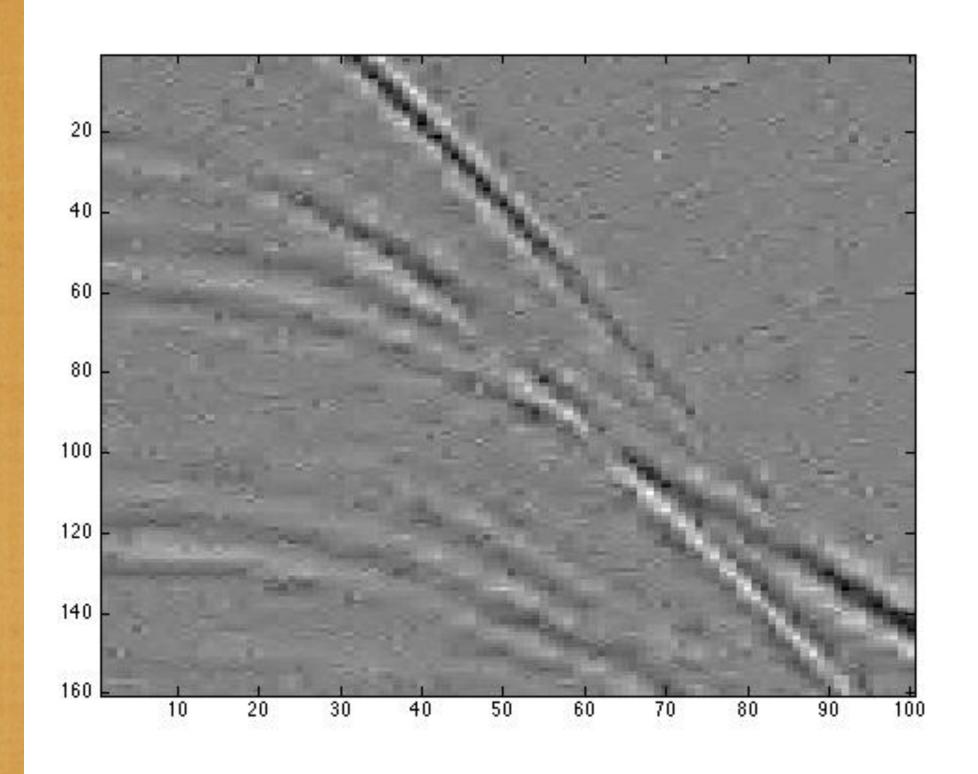
What do you gain?

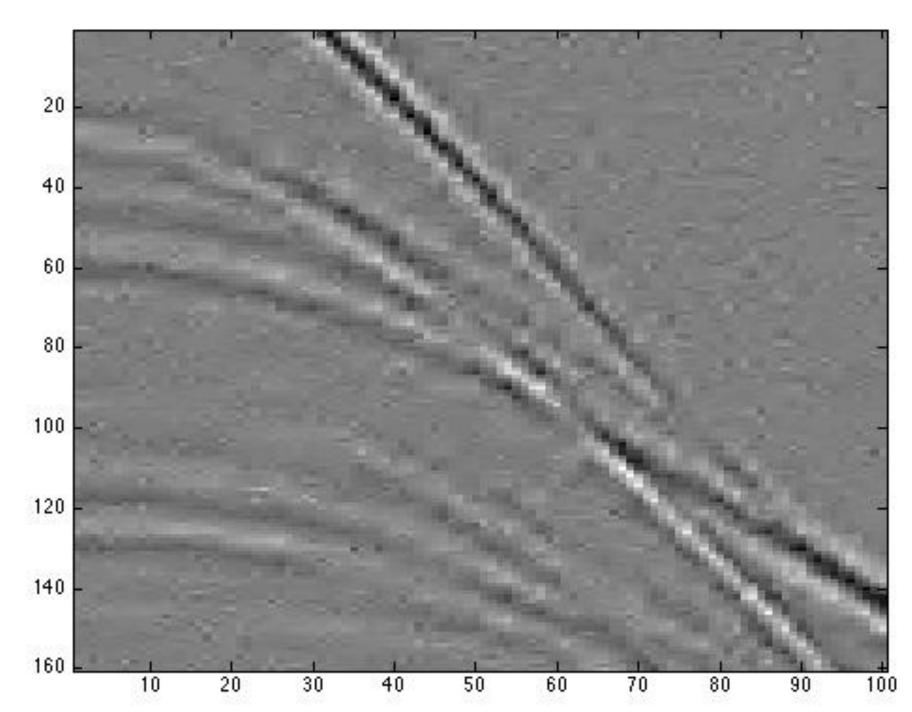
More clear edges on the image with Turbo matrix.

Seismic data with noise



Gaussian vs Turbo



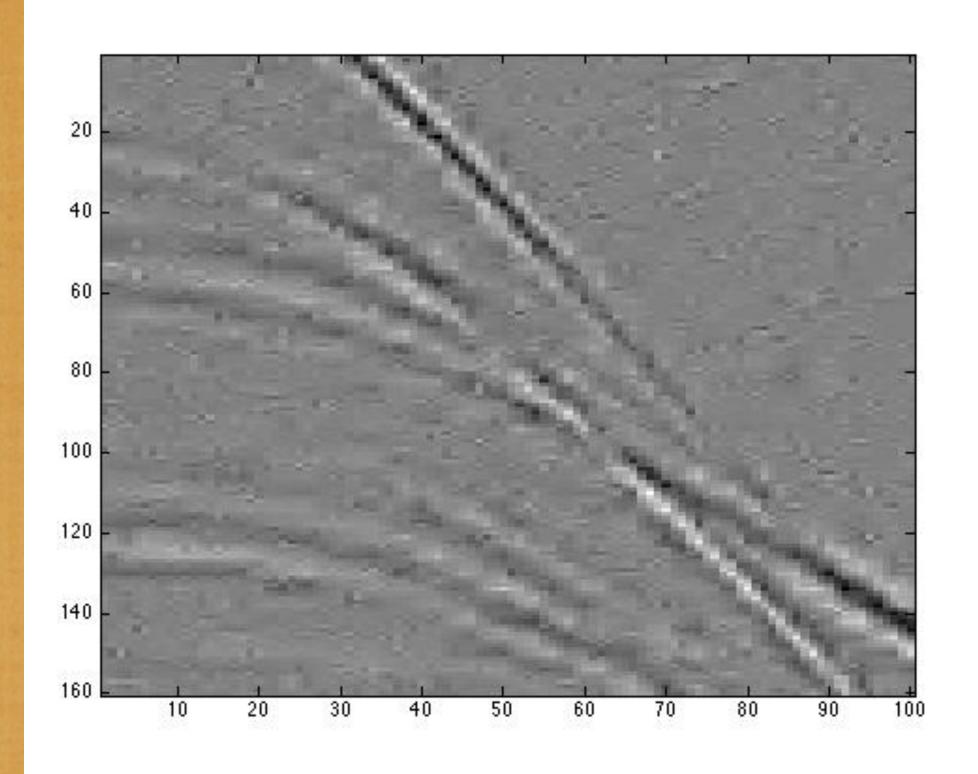


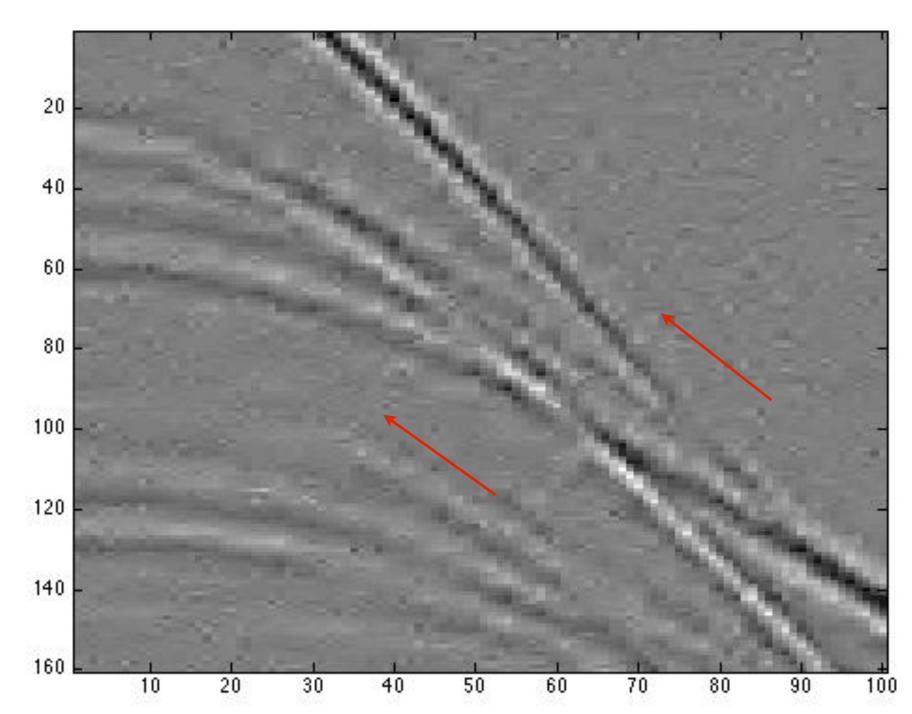
$$SNR = 5.5$$

$$SNR = 6.9$$

Seismic data with noise

Gaussian vs Turbo



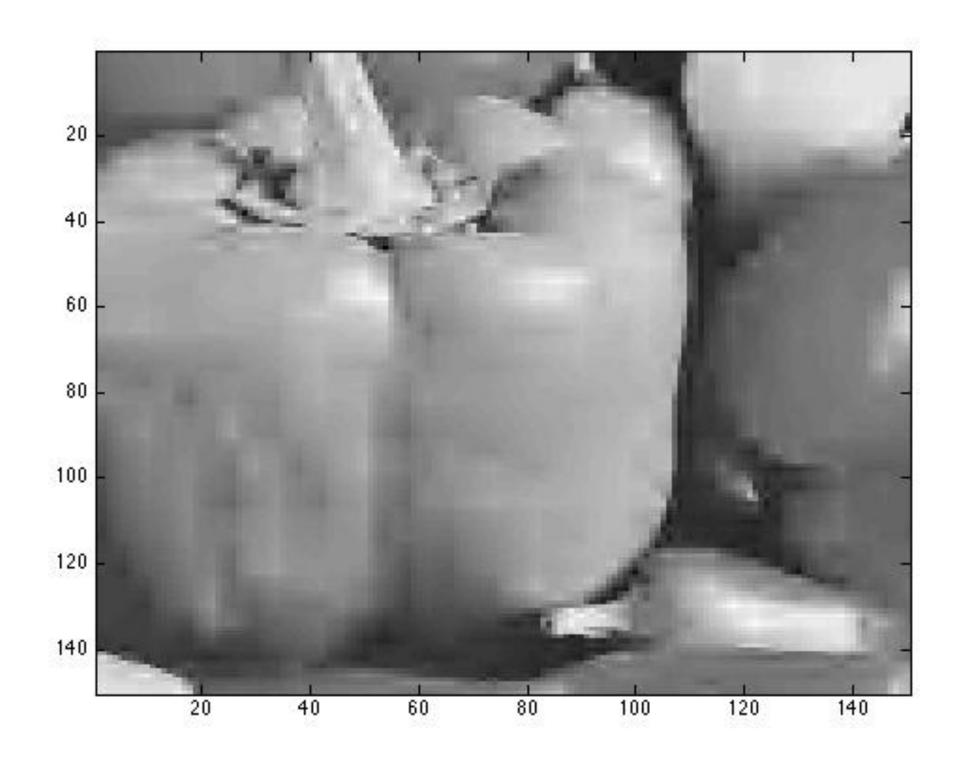


$$SNR = 5.5$$

$$SNR = 6.9$$

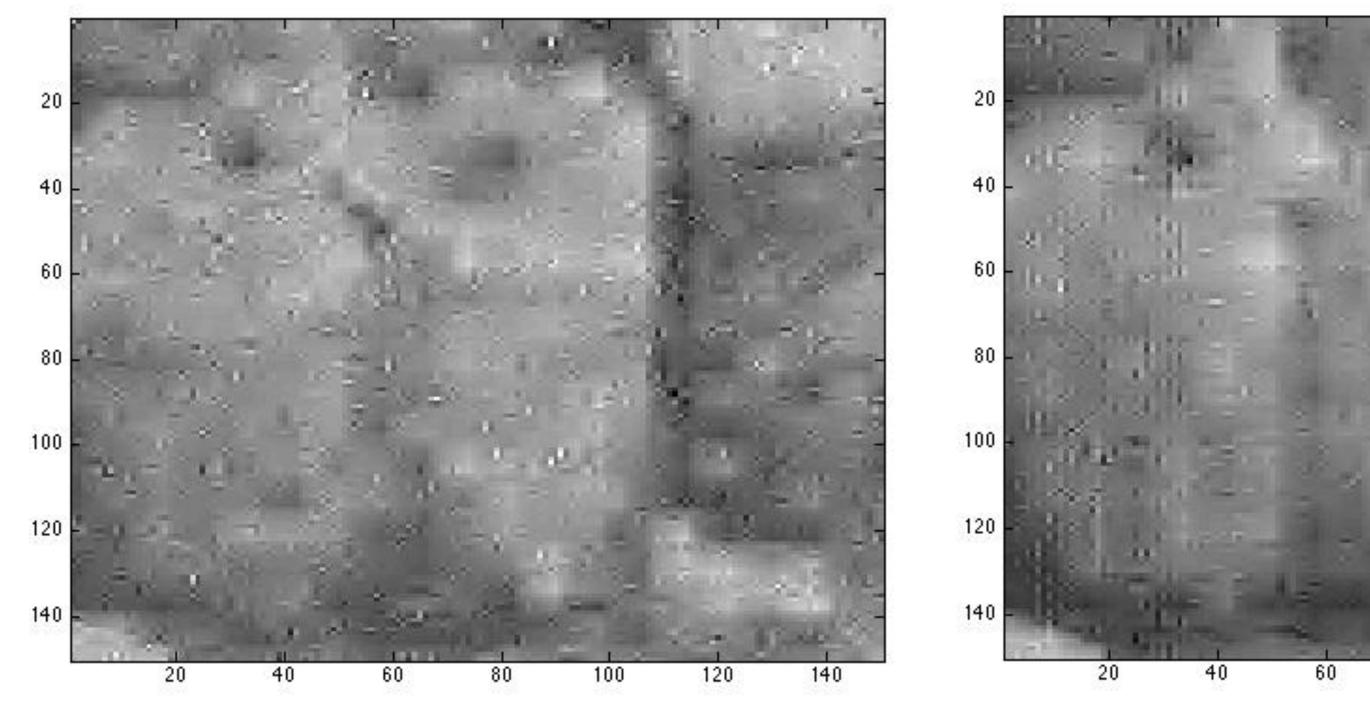
Seismic data with noise

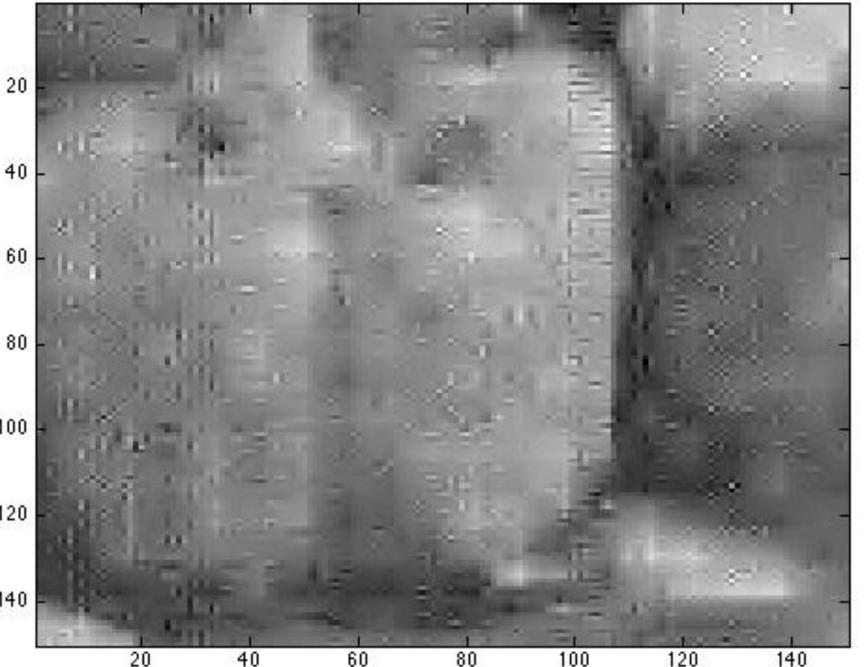
Pepper (5% sparsity)



Throw away
95% of the
wavelet
coefficients

Gaussian vs Turbo

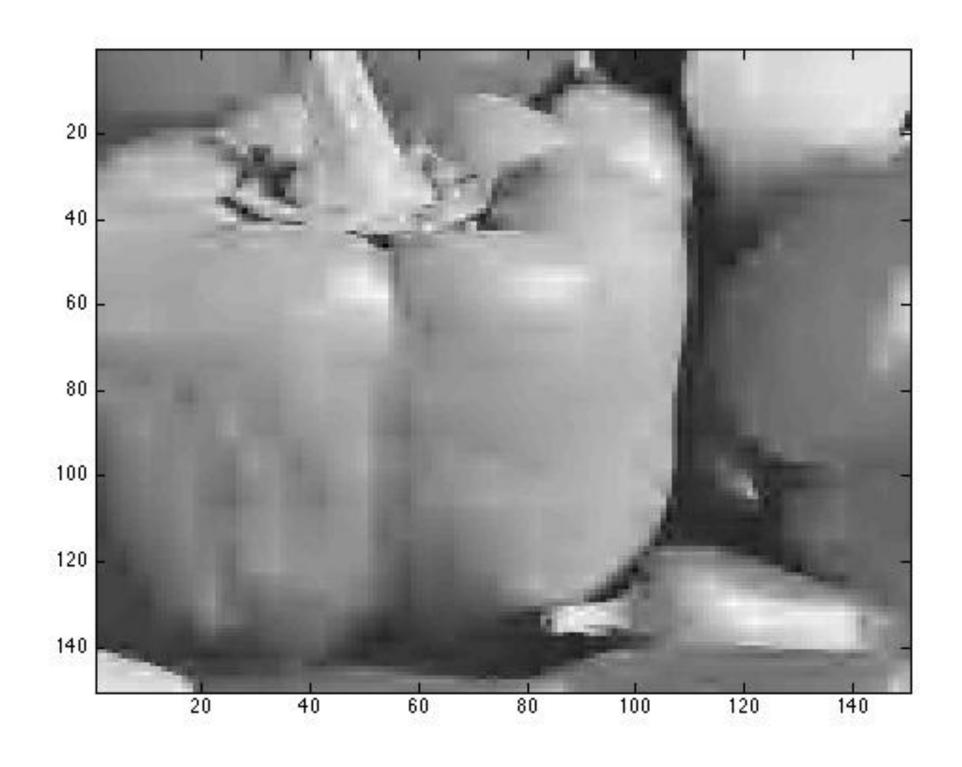




SNR = 10.3

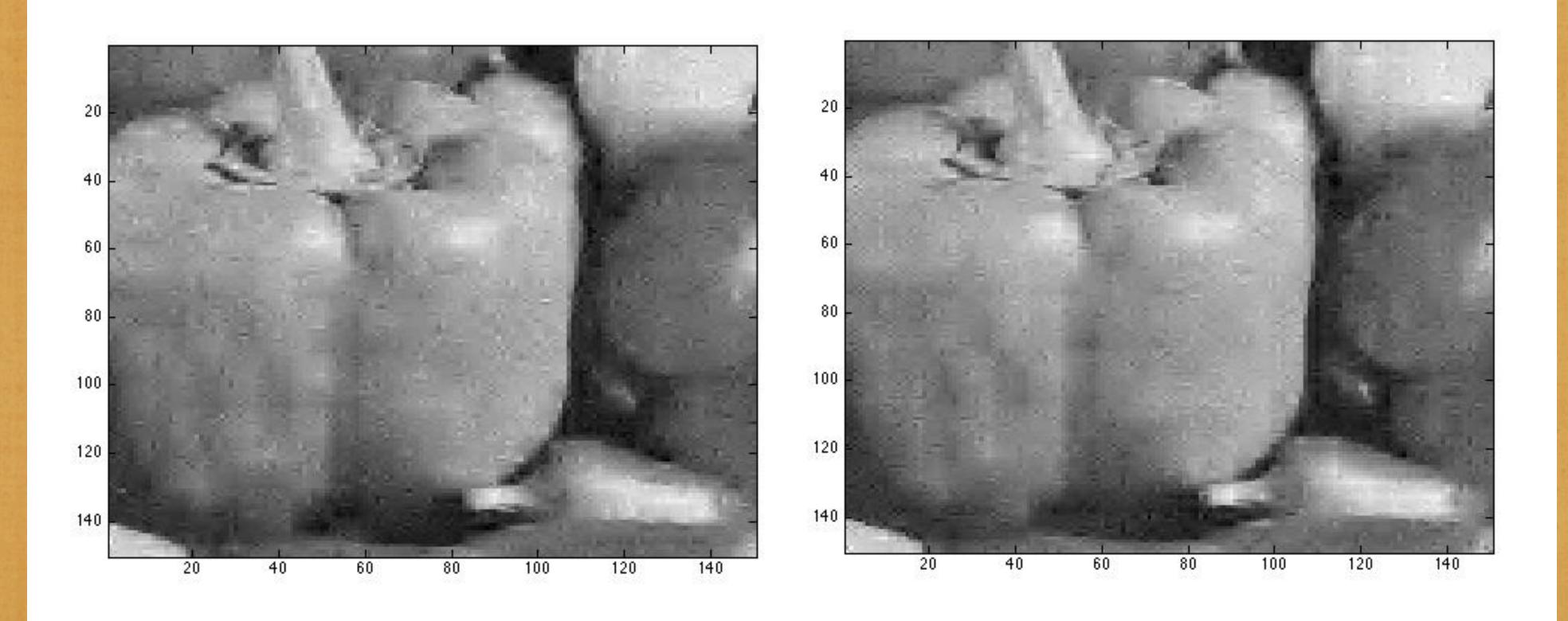
SNR = 13.8

Repper (10% sparsity)



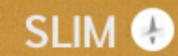
Throw away
90% of the
wavelet
coefficients

Gaussian vs Turbo

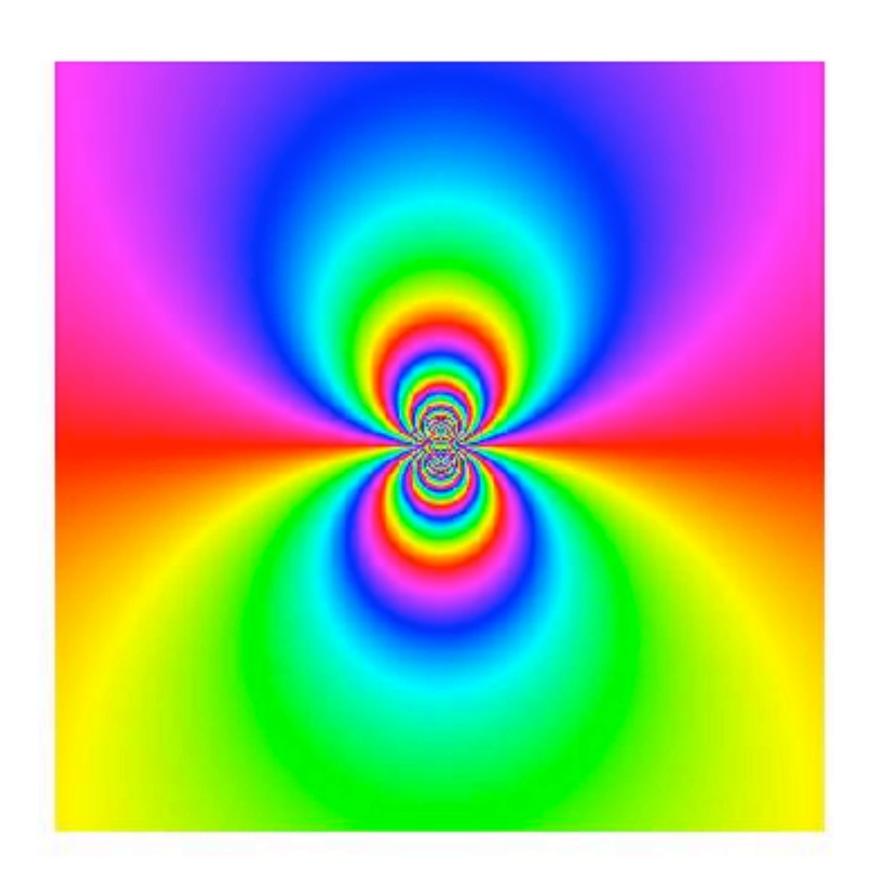


SNR = 21

SNR = 21



Why do you need curvelet?



Not sparse if you use wavelet

Moral of the story

What is one main advantage of using a Turbo matrix?

Better reconstruction over Gaussian matrix when you are ridiculously under-sampling.

Potential improvement

- Turbo matrix outperforms Gaussian matrix when you do not have enough samples
- Understand why
- For what structural data is this true?

Theory behind the scene

Let A be a matrix satisfying the Turbo condition.

Let n be the number of rows in matrix A so that any s-sparse signal can be recovered.

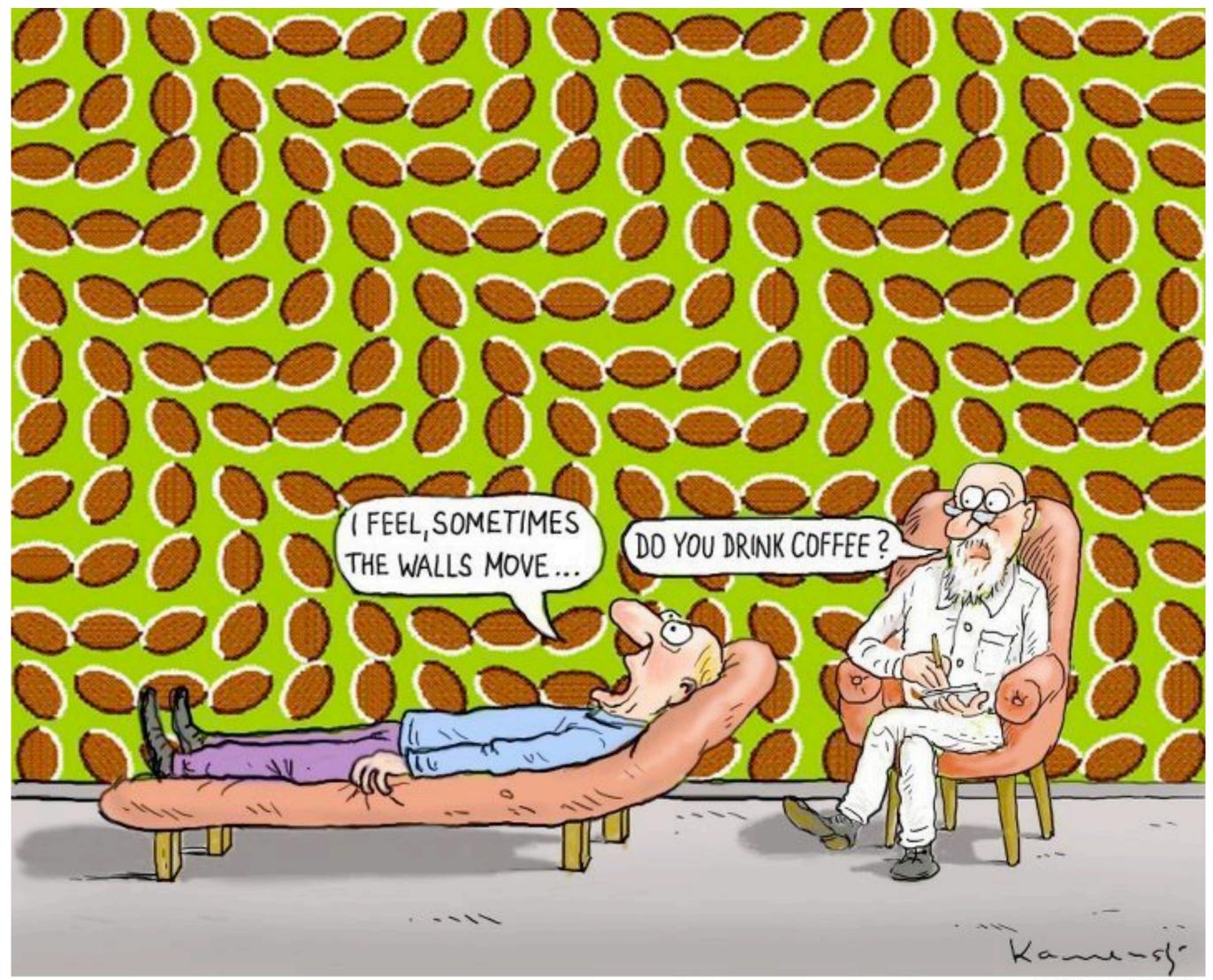
Assume

$$n \ge c_1 \cdot \delta^{-2} \cdot \beta \cdot s \cdot \log^2(4s/\epsilon)$$
, where $c_1 = 4\pi^2$.

Then with probability $1 - \epsilon$,

$$1 - \delta \le \lambda_{\min}(A^*A) \le \lambda_{\max}(A^*A) \le 1 + \delta.$$

sometimes the walls move



WeKnowMemes

Conclusion

Turbo matrix leads to better reconstruction on real data while doing just as well when signal is completely random.

Acknowledgement

- Ozgur Yilmaz, Felix Herrmann
- Curt the MAN, Tim Lin
- All siblings from the SLIM family
- All sponsors

Thank You!

This work was in part financially supported by a PIMS fellowship from the Pacific Institute for Mathematical Sciences and by a NSERC Accelerator Discovery award (Yilmaz - AID 411944-2011).

Exploit sparsity structure

Data = sum of wave atoms

Each wave atom has the same shape.

$$X = c_1 \psi_1 + c_2 \psi_2 + \dots + c_N \psi_N$$

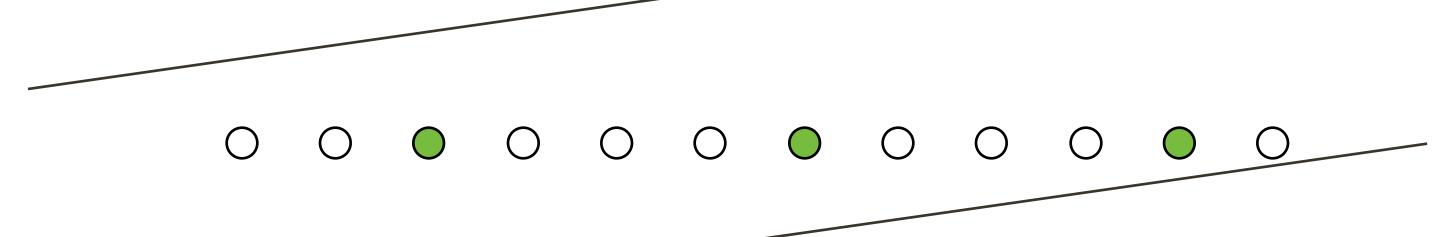
Suppose coefficients are organized in a tree structure.

Sampling schemes

FULL SAMPLING

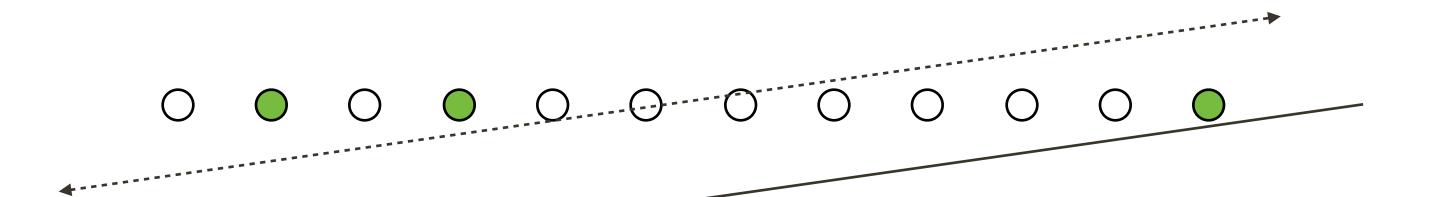
REGULAR UNDERSAMPLING

 $(\eta = 4)$



RANDOM UNDERSAMPLING

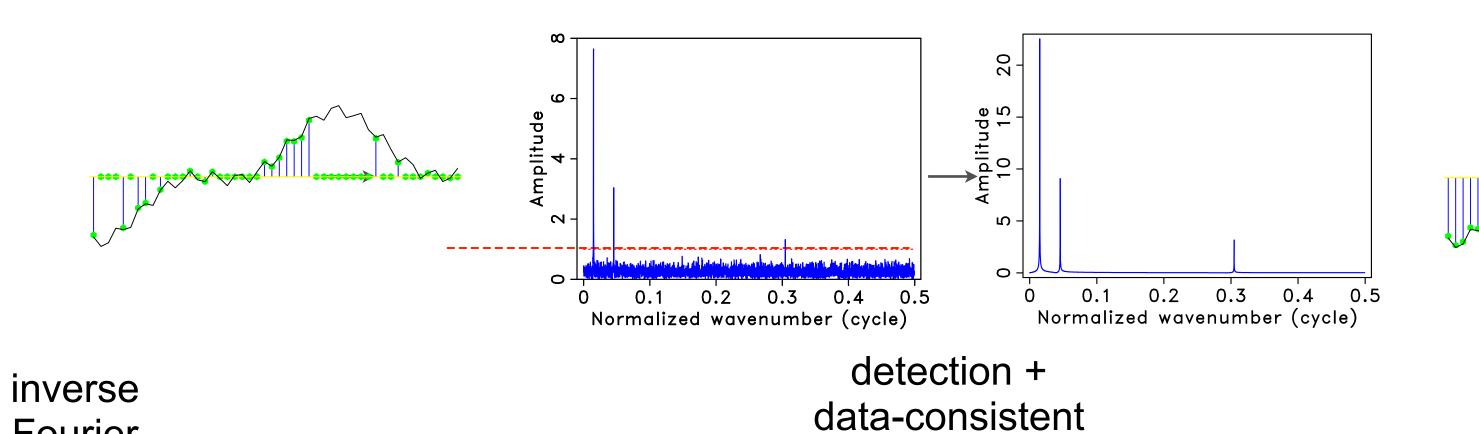
 $(\eta = 4)$



NAIVE sparsity-promoting recovery

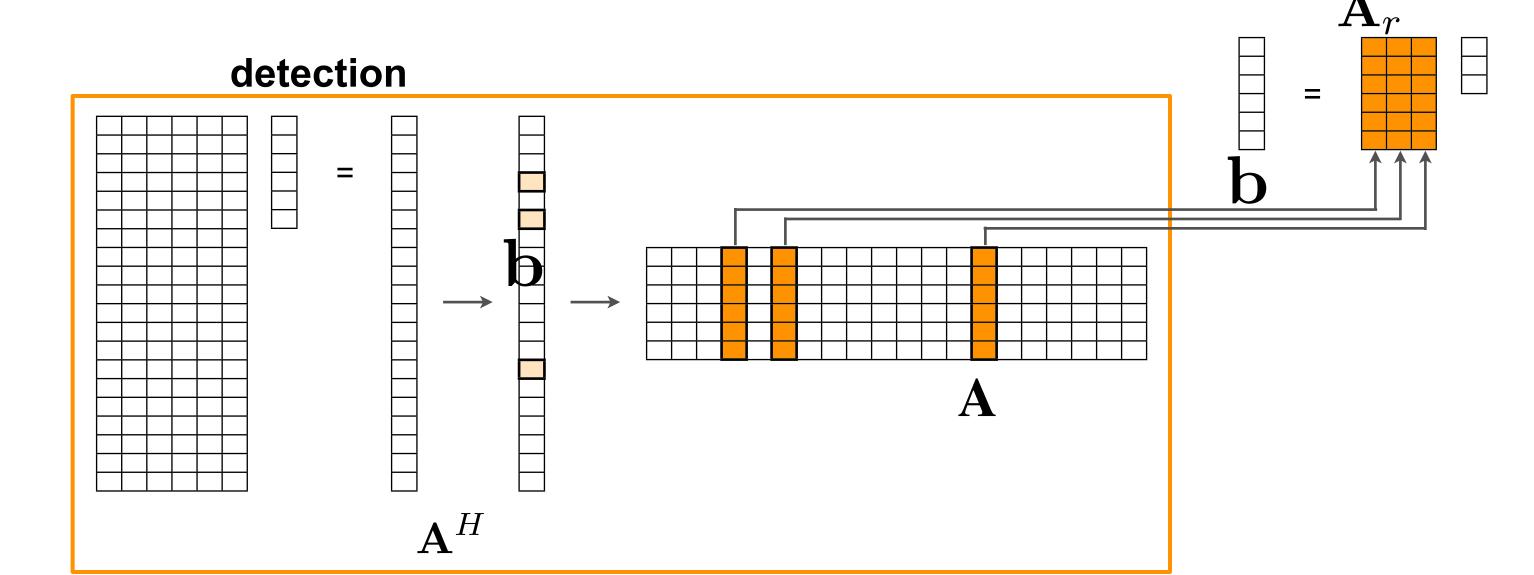
Fourier

transform



amplitude recovery

Fourier transform



data-consistent amplitude recovery

