Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Time-*jittered* **marine** *sources* Haneet Wason and Felix J. Herrmann

Marine acquisition - PAST

regularly sampled spatial grid

Marine acquisition - PRESENT

regularly sampled spatial grid

Simultaneous marine acquisition - PRESENT

regularly sampled spatial grid (almost)

shot-time randomness - *LOW*

Simultaneous marine acquisition - FUTURE?

irregularly sampled spatial grid

shot-time randomness - HIGH

Simultaneous marine acquisition - FUTURE ?

irregularly sampled spatial grid

Current challenges

Need for full sampling

- wave-equation based inversion (RTM & FWI)
- AVO analysis, SRME/EPSI, etc.
- Full azimuthal coverage
 - multiple source vessels
 - simultaneous/blended acquisition
- Deblending or wavefield reconstruction
 - recover unblended data from blended data
 - challenging to recover weak late events

Motivation

Rethink marine acquisition

- sources (and receivers) at random locations
- as long as you know the locations afterwards... it is fine!

Want more for less ...

- shorter survey times
- increased spatial sampling

Motivation

Rethink marine acquisition

- sources (and receivers) at random locations
- as long as you know the locations afterwards... it is fine!

Want more for less ...

- shorter survey times
- increased spatial sampling

How is this possible?

- (multi-vessel) acquisition w/ jittered sampling & "blending" via compressed randomized inter-shot firing times
- sparsity-promoting recovery using ℓ_1 constraints ("deblending")

More for less

PERIODIC-SPARSE-NO OVERLAP

PERIODIC & DENSE

Outline

- Design of time-jittered acquisition
 - jitter in time \Rightarrow jittered in space (shot locations)
 - low vs. high shot-time jitter
- Recovery strategy
- Experimental results of sparsity-promoting processing
 - wavefield recovery via "deblending" & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid

Sampling schemes

[Hennenfent et.al., 2008]

Sampling schemes

Regular vs. jittered locations

regularly sampled spatial grid (almost)

irregularly sampled spatial grid

Regular vs. jittered locations [Speed of source vessel = 5 knots \approx 2.5 m/s]

Regular vs. jittered locations [Speed of source vessel = $5 \text{ knots} \approx 2.5 \text{ m/s}$]

Significant spatial jittering

Design of time-jittered shots

Low variation

High variation

range of randomized shot time

20 s

range of randomized shot time

Shot-time randomness

Shot-time randomness

11

high variability, easier to separate, better low-frequency recovery(?)

Simultaneous source acquisition & deblending

- A new look at simultaneous sources by Beasley et. al., '98, '08
- High quality separation of simultaneous sources by sparse inversion by Abma et. al., '10 -
- Continued development of simultaneous source acquisition for ocean bottom surveys by Abma et. al., '13'
- Changing the mindset in seismic data acquisition by Berkhout, '08
- Utilizing dispersed source arrays in blended acquisition by Berkhout et. al., '12
- Random sampling: a new strategy for marine acquisition by Moldoveanu, '10 -
- Multi-vessel coil shooting acquisition by Moldoveanu, '10
- Simultaneous source separation by sparse radon transform by Akerberg et. al., '08
- Simultaneous source separation using dithered sources by Moore et. al., '08
- Simultaneous sources processing and applications by Moore, '10
- Simultaneous source separation via multi-directional vector-median filter by Huo et. al., '09

```
Method and system for separating seismic sources in marine simultaneous shooting acquisition by Baardman et. al., 13
```

Separation of blended data by iterative estimation and subtraction of blending interference noise by Mahdad et. al., 'I

Our approach

Combination of

- multiple-source time-jittered acquisition
 - random jitter in time \implies jitter in space for a constant speed (favours recovery compared to periodic sampling)
 - shorter acquisition times
- sparsity-promoting processing
 - data is sparse in curvelets
 - optimization: use ℓ_1 constraints

Address two challenges - overlap and jittered sampling (regularize & interpolate)

Shot-time randomness

11

high variability, easier to separate, better low-frequency recovery(?)

Shot-time randomness

high variability leads to source separation + regularization + interpolation

Source separation

Outline

- Design of time-jittered acquisition - jitter in time \Rightarrow jittered in space (shot locations)

Recovery strategy

- Experimental results of sparsity-promoting processing

Compressed Sensing

Successful sampling & reconstruction scheme

- exploit structure via sparsifying transform
- subsampling decreases sparsity
- Iarge scale optimization look for sparsest solution

Time-jittered acquisition

irregularly sampled spatial grid

continuous recording START

continuous recording *STOP*

acquire in the field on irregular grid (subsampled shots w/ overlap between shot records)

would like to have on regular grid (all shots w/o overlaps between shot records)

Sparsity-promoting recovery

$$\mathbf{d} = \mathbf{S}^{\mathbf{H}} \mathbf{x}$$
$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \mathbf{s}$$

 \mathbf{X} $\mathbf{S}^{\mathbf{H}}$ \mathbf{A} \mathbf{b} $\tilde{\mathbf{X}}$ $\tilde{\mathbf{d}}$ a choice of curvelet coefficients for d a transform domain synthesis measurement operator : ΓRS^H Γ is blending operator, R is regularization operator blended data estimated curvelet coefficients for source separated wavefield $(= S^H \tilde{x})$ estimated source separated wavefield

subject to Ax = b

Outline

- Design of time-jittered acquisition - jitter in time \Rightarrow jittered in space (shot locations)
- Experimental results of sparsity-promoting processing
 - wavefield recovery via "deblending" & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid

Time-jittered OBC acquisition [1 source vessel, speed = 5 knots, underlying grid: 25 m] [no. of jittered source locations is half the number of sources (per array) in ideal periodic survey w/o overlap]

MEASUREMENTS (b)

Sparsity-promoting recovery on the grid (14.2 dB) ["deblending" from jittered 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on the grid (14.2 dB) ["deblending" from jittered 50m grid to regular 25m grid] (difference)

RECEIVER GATHER

FDCT vs. NFDCT

Fast Discrete Curvelet Transform

Non-equispaced Fast Discrete Curvelet Transform

Recovery with FDCT ('binning') ["deblending" from *jittered* 50m grid to *regular* 25m grid]

RECEIVER GATHER

DIFFERENCE 0 0.5-(s) Time 1.5-2 -1000 2000 3000 0 Source (m)

Sparsity-promoting recovery on irregular grid with NFDCT (17.1 dB) ["deblending" from jittered 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (17.1 dB) ["deblending" from jittered 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (17.1 dB) ["deblending" from jittered 50m grid to regular 25m grid] (difference)

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (12.5 dB)

["deblending" + interpolation from *jittered* 50m grid to regular (12.5m) grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (12.5 dB) ["deblending" + interpolation from jittered 50m grid to regular 12.5m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (12.5 dB)

RECEIVER GATHER

["deblending" + interpolation from *jittered* 50m grid to regular 12.5m grid] (difference)

Performance

Improvement spatial sampling ratio (50m to 12.5m)

 $= \frac{\text{no. of spatial grid points recovered from jittered sampling via sparse recovery}}{\text{no. of spatial grid points in conventional sampling}}$

$$=\frac{128}{64}=2$$

Summary

	jittered to regular (m)	recovery with FDCT [SNR (dB)]	recovery with NFDCT [SNR (dB)]
1 source vessel (2 airgun arrays)	50 to 25	14.2	17.1
	50 to 12.5	11.1	12.5
2 source vessels (2 airgun arrays per vessel)	50 to 25	19.7	21.5
	50 to 12.5	15.0	16.3

Observations

- Larger variability in shot-times seems desirable
 - incoherent aliasing
 - wavenumber diversity
- Source separation and interpolation can be treated as sparse inversion problems - together
- With sparsity-promoting recovery we can
 - deblend, recover the wavefield
 - regularize, from a *jittered/irregular* to a regular grid
 - 12.5m, and finer)

- interpolate, from a coarse jittered (50m) grid to a fine regular grid (25m,

Future work

- good source separation?
- Source separation for small variability in shot-times
 - towed streamer acquisition
- Comparisons with rank minimization technique for source separation

How much randomness (in shot-times) is sufficient to ensure

Acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

Thank you!

References

van den Berg, E., and Friedlander, M.P., 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31,890-912.

Candès, E. J., and L. Demanet, 2005, The curvelet representation of wave propagators is optimally sparse: Comm. Pure Appl. Math, 58, 1472–1528.

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2005, Fast discrete curvelet transforms: Multiscale Modeling and Simulation, 5, 861–899.

Donoho, D. L., 2006, Compressed sensing: IEEE Trans. Inform. Theory, 52, 1289–1306.

Hennenfent, G., and Felix J. Herrmann, 2008, Simply denoise: wavefield reconstruction via jittered undersampling, Geophysics, 73, 19-28. Hennenfent, G., L. Fenelon, and Felix J. Herrmann, 2010, Nonequispaced curvelet transform for seismic data reconstruction: a

sparsity-promoting approach, Geophysics, 75, WB203-WB210.

Mansour, H., Haneet Wason, Tim T. Y. Lin, and Felix J. Herrmann, 2012, Randomized marine acquisition with compressive sampling matrices: Geophysical Prospecting, 60, 648–662.

Wason, H., and Felix J. Herrmann, 2013, Ocean bottom seismic acquisition via jittered sampling: 75th EAGE Conference and Exhibition Wason, H., and Felix J. Herrmann, 2013, Time-jittered ocean bottom seismic acquisition: SEG Technical Program Expanded Abstracts

