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Current challenges

‣ Need for full sampling
- wave-equation based inversion (RTM & FWI)
- AVO analysis, SRME/EPSI, etc.

‣ Full azimuthal coverage 
- multiple source vessels
- simultaneous/blended acquisition

‣ Deblending or wavefield reconstruction
- recover unblended data from blended data
- challenging to recover weak late events



Motivation

Rethink marine acquisition 
- sources (and receivers) at random locations
- as long as you know the locations afterwards... it is fine!

Want more for less ...
- shorter survey times
- increased spatial sampling



Motivation

Rethink marine acquisition 
- sources (and receivers) at random locations
- as long as you know the locations afterwards... it is fine!

Want more for less ...
- shorter survey times
- increased spatial sampling

How is this possible?
- (multi-vessel) acquisition w/ jittered sampling & “blending” via compressed 

randomized inter-shot firing times
- sparsity-promoting recovery using     constraints (“deblending”)`1



More for less
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Outline

‣ Design of time-jittered acquisition
- jitter in time ⇒ jittered in space (shot locations)

- low vs. high shot-time jitter

‣ Recovery strategy

‣ Experimental results of sparsity-promoting processing
- wavefield recovery via “deblending” & interpolation from (coarse) 

jittered/irregular to (fine) regular sampling grid



Sampling schemes

[Hennenfent et.al., 2008]

( η = 4 )

full	
  sampling

regular	
  undersampling

uniform	
  random	
  
undersampling

( η = 4 )

( η = 4 )

jittered	
  undersampling

regularly	
  undersampled	
  spatial	
  grid



Sampling schemes

dense	
  sampling

regular	
  shooting
(with	
  sim.	
  sources)

uniform	
  random	
  
shot-­‐times

time-­‐jittered	
  shot	
  times

regularly	
  undersampled	
  spatial	
  grid



Regular vs. jittered locations
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Regular vs. jittered locations
[Speed of source vessel = 5 knots ≈ 2.5 m/s] 
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[Speed of source vessel = 5 knots ≈ 2.5 m/s] 

Regular vs. jittered locations



Significant spatial jittering
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Design of time-jittered shots
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Shot-time randomness

low	
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Simultaneous source acquisition & deblending

- A new look at simultaneous sources by Beasley et. al., ’98, ’08
- High quality separation of simultaneous sources by sparse inversion by Abma et. al., ’10
- Continued development of simultaneous source acquisition for ocean bottom surveys by Abma et. al., ’13
- Method and system for separating seismic sources in marine simultaneous shooting acquisition by Baardman et. al., 13
- Changing the mindset in seismic data acquisition by Berkhout, ’08 
- Utilizing dispersed source arrays in blended acquisition by Berkhout et. al., ’12
- Random sampling: a new strategy for marine acquisition by Moldoveanu, ’10
- Multi-vessel coil shooting acquisition by Moldoveanu, ’10
- Simultaneous source separation by sparse radon transform by Akerberg et. al., ’08
- Simultaneous source separation using dithered sources by Moore et. al., ’08
- Simultaneous sources - processing and applications by Moore, ’10
- Simultaneous source separation via multi-directional vector-median filter by Huo et. al., ’09
- Separation of blended data by iterative estimation and subtraction of blending interference noise by Mahdad et. al., ’11



Our approach

Combination of
‣ multiple-source time-jittered acquisition

- random jitter in time        jitter in space for a constant speed 
(favours recovery compared to periodic sampling)

- shorter acquisition times

‣ sparsity-promoting processing
- data is sparse in curvelets
- optimization: use     constraints

=)

`1

Address two challenges - overlap and jittered sampling (regularize & interpolate)
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Outline
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Compressed Sensing

Successful sampling & reconstruction scheme

‣ exploit structure via sparsifying transform

‣ subsampling – decreases sparsity 
 

‣ large scale optimization – look for sparsest solution
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Sparsity-promoting recovery
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Time-jittered OBC acquisition
[1 source vessel, speed = 5 knots, underlying grid: 25 m] 
[no. of jittered source locations is half the number of sources (per array) in ideal periodic survey w/o overlap]
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Sparsity-promoting recovery on the grid (14.2 dB)

receiver gather shot gather

[“deblending” from jittered 50m grid to regular 25m grid] 



Sparsity-promoting recovery on the grid (14.2 dB)
[“deblending” from jittered 50m grid to regular 25m grid]   (difference)
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FDCT vs. NFDCT

Fast Discrete Curvelet Transform
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Irregular traces
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Recovery with FDCT (‘binning’)

receiver gather difference

[“deblending” from jittered 50m grid to regular 25m grid] 



Sparsity-promoting recovery on irregular grid 
with NFDCT (17.1 dB)
[“deblending” from jittered 50m grid to regular 25m grid]
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[“deblending” from jittered 50m grid to regular 25m grid]
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Sparsity-promoting recovery on irregular grid 
with NFDCT (17.1 dB)



[“deblending” from jittered 50m grid to regular 25m grid]   (difference)
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Sparsity-promoting recovery on irregular grid 
with NFDCT (17.1 dB)



Sparsity-promoting recovery on irregular grid 
with NFDCT (12.5 dB)
[“deblending” + interpolation from jittered 50m grid to regular 12.5m grid]
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Sparsity-promoting recovery on irregular grid 
with NFDCT (12.5 dB)
[“deblending” + interpolation from jittered 50m grid to regular 12.5m grid]



[“deblending” + interpolation from jittered 50m grid to regular 12.5m grid]   (difference)

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (12.5 dB)



Performance

Improvement spatial sampling ratio (50m to 12.5m)

= 128
64 = 2

= no. of spatial grid points recovered from jittered sampling via sparse recovery

no. of spatial grid points in conventional sampling



jittered to regular (m)
recovery with FDCT 

[SNR (dB)]
recovery with NFDCT 

[SNR (dB)]

1 source vessel
(2 airgun arrays)

50 to 25 14.2 17.1
1 source vessel

(2 airgun arrays)
50 to 12.5 11.1 12.5

2 source vessels
(2 airgun arrays 

per vessel)

50 to 25 19.7 21.52 source vessels
(2 airgun arrays 

per vessel) 50 to 12.5 15.0 16.3

Summary



Observations

‣ Larger variability in shot-times seems desirable
- incoherent aliasing
- wavenumber diversity

‣ Source separation and interpolation can be treated as sparse 
inversion problems - together

‣ With sparsity-promoting recovery we can
- deblend, recover the wavefield 
- regularize, from a jittered/irregular to a regular grid
- interpolate, from a coarse jittered (50m) grid to a fine regular grid (25m, 

12.5m, and finer)
 



Future work

‣ How much randomness (in shot-times) is sufficient to ensure 
good source separation?

‣ Source separation for small variability in shot-times
- towed streamer acquisition

‣ Comparisons with rank minimization technique for source 
separation
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