Reflection FWI with a Poor Starting Model

Mike Warner & Gang Yao

Inverting synthetic data is easy if ...

- Unrealistic accurate starting model
- Unrealistic low frequencies
- Unrealistic long offsets
- Unrealistic compute effort
- Perfect physics during inversion

Can we invert with ...

- No knowledge of true model
- No data below 4 Hz
- Only reflections
- Maximum offset \approx target depth
- Realistic compute in 3D
- Imperfect physics

 \rightarrow velocity update at all scale lengths \rightarrow improved RTM

Conventional FWI minimises the functional f

subtraction of oscillating signals causes cycle skipping

dominant frequency about 7Hz

predicted

observed

functional $f = || \mathbf{d} - \mathbf{p} ||^2$

dominant frequency about 7Hz

functional $f = || \mathbf{d} - \mathbf{p} ||^2$

dominant frequency about 7Hz

Conventional FWI – refraction

in transmission - forward and residual follow same path

Conventional FWI – reflection

Conventional FWI

Reflection FWI

- To make reflection FWI update the macro model we need to:
- cross correlate waves travelling in opposite directions
- avoid cross-correlating waves travelling in the same direction
- the latter is least-squares RTM
- the former is least-squares FWI
- we need to interleave these

Inverting Marmousi is easy...

Migrating Marmousi is easy ...

Inverting Marmousi is difficult...

- No good starting model
- No data below 4 Hz
- Only reflections
- Maximum offset \approx target depth
- Realistic compute in 3D

Inverting Marmousi is difficult...

Least-squares inverted RTM

Conventional RTM with true model

Conclusions

- interleaving RTM and FWI works when FWI fails
- only 10 iterations per source
- no data below 4 Hz
- only reflections

- add modified functional
- add up-down separation
- add multiples