Noise Reduction by Using Interferometric Measurements

Rongrong Wang, and Bas Peters

December 2nd, 2013

University of British Columbia

Problem

Figure : Source and receiver location in simulation
The modeling error will cause: large phase shift in high frequency data.

Full waveform inversion in frequency domain
If the everything is accurate, the forward operator F maps the true model to the data

$$
\begin{equation*}
F_{i}(\mathbf{m})=\mathbf{d}_{\mathbf{i}}, \quad \text { for } \mathbf{i}=\mathbf{1}, \ldots, \mathbf{n f} * \mathbf{n s}, \tag{1}
\end{equation*}
$$

where F_{i} satisfies

$$
\begin{aligned}
& \left(\Delta+\mathbf{m} \omega^{2}\right) \mathbf{u}_{\mathbf{i}}=\mathbf{q}_{\mathbf{i}} \\
& F_{i}(\mathbf{m})=P_{i} \mathbf{u}_{\mathbf{i}}\left(\mathbf{m}, \mathbf{q}_{\mathbf{i}}\right)
\end{aligned}
$$

and where $\mathbf{q}_{\mathbf{i}}$ is the source term, P_{i} is the projection operator on the receivers, \mathbf{m} is the model parameter $\left(s^{2} / k m^{2}\right)$, and $\mathbf{u}_{\mathbf{i}}$ is the wavefield.

Now $\mathbf{q}_{\mathbf{i}}$ and P_{i} are inaccurate: $F_{i} \rightarrow \widetilde{F}_{i}$, and

$$
\widetilde{F}_{i}(\mathbf{m}) \approx \mathbf{d}_{\mathbf{i}} \circ e^{j \theta_{\mathbf{i}}}
$$

The least square solution

The least square solver solves

$$
\hat{\mathbf{m}}=\arg \min \sum_{i=1}^{n f * n s}\left\|\widetilde{F}_{i}(\mathbf{m})-\mathbf{d}_{\mathbf{i}}\right\|_{2}^{2}
$$

Assume $n f=1$, this solver becomes

$$
\hat{\mathbf{m}}=\arg \min \|\widetilde{F}(\mathbf{m})-\mathbf{d}\|_{2}^{2},
$$

where $\widetilde{F}=\left[\begin{array}{ccc}-- & \widetilde{F}_{1} & -- \\ -- & \widetilde{F}_{2} & -- \\ -- & \vdots & -- \\ -- & \widetilde{F}_{n s} & --\end{array}\right]$ and $\mathbf{d}=\left[\begin{array}{c}d_{1} \\ d_{2} \\ \vdots \\ d_{n s}\end{array}\right]$.
We are directly fitting \mathbf{d} with $\widetilde{F}(m)$.

Interferometric lifting: another way of fitting the data
[Demanet et. al, 2013] Lift a vector to a matrix:

$$
\mathbf{x} \equiv\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\left[\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right] \equiv\left[\begin{array}{cccc}
\left|x_{1}\right|^{2} & x_{1} \bar{x}_{2} & \ldots & x_{1} \bar{x}_{n} \\
x_{2} \bar{x}_{1} & \left|x_{2}\right|^{2} & \ldots & \vdots \\
\vdots & \vdots & \ddots & x_{n-1} \bar{x}_{n} \\
x_{n} \bar{x}_{1} & \cdots & x_{n} \bar{x}_{n-1} & \left|x_{n}\right|^{2}
\end{array}\right] \equiv X
$$

Benefit of the lifting: $\|x\|^{2}=\operatorname{trace}(X)$, changing the nonlinear function $\|\cdot\|_{2}^{2}$ of \mathbf{x} to the linear function trace (\cdot) of X.

Interferometric lifting: another way of fitting the data

Use the lifting on the seismic model:

- $\mathbf{d} \rightarrow \mathbf{d d}^{\mathbf{T}}$;
- $\widetilde{F}(\mathbf{m}) \rightarrow \widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}$;
- Fitting d with $\widetilde{F}(\mathbf{m}) \rightarrow$ fitting $\mathbf{d d}^{\top}$ with $\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}$;
- Solving $\min \|\widetilde{F}(\mathbf{m})-\mathbf{d}\|_{2}^{2} \rightarrow$ solving $\min \left\|\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}-\mathbf{d d}^{\top}\right\|_{\mathbf{F}}^{\mathbf{F}}$.

By lifting the data vector to a matrix, we

- used the same amount of data;
- increased the computational complexity;
- hope to increase the accuracy.

A quick observation: If F is linear, then $\arg \min \|\widetilde{F}(\mathbf{m})-\mathbf{d}\|_{2}^{2}=\arg \min \left\|\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}-\mathbf{d d}^{\mathbf{T}}\right\|_{\mathbf{F}}^{\mathbf{F}}$, the two problems are equivalent.

Interferometric lifting: another way of fitting the data
What if we fit only a portion of $\mathbf{d d}^{\top}$?
Define $P_{\Omega}: b b^{T} \rightarrow \mathbb{C}^{n, n}$ by

$$
\left[\begin{array}{llll}
\left|\mathbf{d}_{1}\right|^{2} & \mathbf{d}_{1} \overline{\mathbf{d}}_{2} & \mathbf{d}_{1} \overline{\mathbf{d}}_{3} & \mathbf{d}_{1} \bar{d}_{4} \\
\mathbf{d}_{2} \overline{\mathbf{d}}_{1} & \left|\mathbf{d}_{2}\right|^{2} & \mathbf{d}_{2} \bar{d}_{3} & \mathbf{d}_{2} \mathbf{d}_{4} \\
\mathbf{d}_{3} \overline{\mathbf{d}}_{1} & \mathbf{d}_{3} \overline{\mathbf{d}}_{2} & \left|\mathbf{d}_{3}\right|^{2} & \mathbf{d}_{\mathbf{3}} \bar{d}_{4} \\
\mathbf{d}_{4} \overline{\mathbf{d}}_{1} & \mathbf{d}_{4} \overline{\mathbf{d}}_{2} & \mathbf{d}_{4} \overline{\mathbf{d}}_{3} & \left|\mathbf{d}_{4}\right|^{2}
\end{array}\right] \otimes\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
\left|\mathbf{d}_{1}\right|^{2} & 0 & 0 & \mathbf{d}_{1} \overline{\mathbf{d}}_{4} \\
\mathbf{d}_{2} \overline{\mathbf{d}}_{1} & \left|\mathbf{d}_{2}\right|^{2} & 0 & 0 \\
\mathbf{d}_{3} \overline{\mathbf{d}}_{1} & 0 & \left|\mathbf{d}_{3}\right|^{2} & 0 \\
0 & \mathbf{d}_{4} \overline{\mathbf{d}}_{2} & 0 & \left|\mathbf{d}_{4}\right|^{2}
\end{array}\right]
$$

We only fit the chosen entries
$\min \left\|\left[\begin{array}{cccc}\lambda\left|\widetilde{F}(\mathbf{m})_{1}\right|^{2} & 0 & 0 & \widetilde{F}(\mathbf{m})_{1} \widetilde{F}(\mathbf{m})_{4} \\ \widetilde{F}(\mathbf{m})_{2}{ }_{2}\left(\mathbf{F}(\mathbf{m})_{1}\right. & \lambda\left|\widetilde{F}(\mathbf{m})_{2}\right|^{2} & 0 & 0 \\ \widetilde{F}(\mathbf{m})_{3} \widetilde{F}(\mathbf{m})_{1} & 0 & \lambda\left|\widetilde{F}(\mathbf{m})_{3}\right|^{2} & 0 \\ 0 & \widetilde{F}(\mathbf{m})_{4} \widetilde{F}(\mathbf{m})_{2} & 0 & \lambda\left|\widetilde{F}(\mathbf{m})_{4}\right|^{2}\end{array}\right]-\left[\begin{array}{cccc}\lambda\left|\mathbf{d}_{1}\right|^{2} & 0 & 0 & \mathbf{d}_{1} \overline{\mathbf{d}}_{4} \\ \mathbf{d}_{2} \overline{\mathbf{d}}_{1} & \lambda\left|\mathbf{d}_{2}\right|^{2} & 0 & 0 \\ \mathbf{d}_{3} \overline{\mathbf{d}}_{1} & 0 & \lambda\left|\mathbf{d}_{3}\right|^{2} & 0 \\ 0 & \mathbf{d}_{4} \overline{\mathbf{d}}_{2} & 0 & \lambda\left|\mathbf{d}_{4}\right|^{2}\end{array}\right]\right\|_{F}$
or in compact form

$$
\begin{equation*}
\min \left\|\left(P_{\Omega}+\lambda\left(P_{D}\right)\right)\left(\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}-\mathbf{d d}^{\mathbf{\top}}\right)\right\|_{\mathbf{F}}^{2}, \tag{2}
\end{equation*}
$$

where D represent the diagonal indices and $\lambda>1$.

Interferometric lifting: another way of fitting the data

How to choose the set of fitting indices Ω ?

- The diagonal entries are always included;
- Put more weight on the diagonal entries when phase error is dominant;
- Each of the off diagonal entries is chosen independently with probability p. This is called the Erdös-Rényi model.

Why the Erdös-Rényi model? A short review of interferometry

Borcea et al. (2005) proposed the Coherent INTerfermetric imaging functional (CINT)

$$
I_{\mathrm{CINT}}=\operatorname{diag}\left\{\widetilde{F}^{*}\left(P_{\Omega}\left(\mathbf{d d}^{*}\right) \widetilde{F}\right\}\right.
$$

Jugnon et al. (2013) extend the model to solve inversion problem

$$
\text { find } \mathbf{m} \text { s.t. }\left\|P_{\Omega}\left[\widetilde{F} \mathbf{m m}^{*} \widetilde{F}-\mathbf{d d}^{*}\right]\right\|_{1}<\sigma
$$

and prove that

$$
\frac{\left\|\hat{\mathbf{m}}-e^{i \alpha} \mathbf{m}\right\|}{\|\mathbf{m}\|} \leq 15 \kappa(\widetilde{F})^{2} \sqrt{\frac{\sigma}{\lambda_{2}}}+\kappa(\widetilde{F}) \frac{\|(F-\widetilde{F}) \mathbf{m}\|}{\|\mathbf{b}\|}
$$

The Erdös-Rényi model will guarantee λ_{2} to be large.

Fitting indices chosen in the Erdös-Rényi model

Figure : The active indices for $\mathrm{p}=0.005,0.01,0.05,0.1$

How to choose p ?

Theorem (R. Wang, and B. Peters, 2013)
Suppose F is linear, Ω is symmetric and the error only comes in the phase of the data. Let $\hat{\mathbf{m}}$ be the solution to (2), then we have

$$
(\hat{\mathbf{m}}-\mathbf{m})^{T}\left(F^{T} \mathcal{L} F\right)(\hat{\mathbf{m}}-\mathbf{m}) \leq 2\left|\operatorname{Trace}\left(\mathcal{L} \circ\left(\mathbf{d} \mathbf{d}^{T}-\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}\right)\right)\right|,
$$

where \mathcal{L} is the Graph laplacian depending on both Ω and \mathbf{d}.

Theorem

If we further assume that \hat{m} is close to \mathbf{m}, then it holds

$$
\begin{equation*}
\|\hat{\mathbf{m}}-\mathbf{m}\|_{2}^{2} \lesssim 2 \frac{\left|\operatorname{Trace}\left(\mathcal{L} \circ\left(\mathbf{d d}^{T}-\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})\right)^{T}\right)\right|}{\lambda_{\min }\left(R^{T} \mathcal{L} R\right)}, \tag{3}
\end{equation*}
$$

where $R=F \cdot \operatorname{Null}(\operatorname{diag}[\operatorname{Re}(F \mathbf{m})] \operatorname{Re}(F)+\operatorname{diag}[\operatorname{lm}(F \mathbf{m})] \operatorname{lm}(F))$. If $R=0$, then the magnitude $|\mathbf{d}|$ alone is enough to recover the model \mathbf{m}.
Choose p such that the bound in (3) is minimized.

Implementation issues

In practice, both F and \mathbf{m} are unknown and F is nonlinear. We propose to approximate the ratio $\frac{\left|\operatorname{Trace}\left(\mathcal{L} \circ\left(\mathbf{d d}^{T}-\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}\right)\right)\right|}{\lambda_{\min }\left(R^{T} \mathcal{L} R\right)}$, by

- replacing $\widetilde{F}(\mathbf{m})$ with $\widetilde{F}\left(\mathbf{m}_{\mathbf{0}}\right)$, where $\mathbf{m}_{\mathbf{0}}$ is the initial guess;
- replacing $R=F \cdot \operatorname{Null}(\operatorname{diag}[\operatorname{Re}(F \mathbf{m})] \operatorname{Re}(F)+\operatorname{diag}[\operatorname{Im}(F \mathbf{m})] \operatorname{Im}(F))$ with

$$
\widetilde{R}=F\left\{\operatorname{Null}\left[\operatorname{diag}\left[\operatorname{Re}\left(F\left(\mathbf{m}_{0}\right)\right)\right] \operatorname{Re}\left(\frac{\mathrm{d} F}{\mathrm{~d} \mathbf{m}}\left(\mathbf{m}_{0}\right)\right)+\operatorname{diag}\left[\operatorname{Im}\left(F\left(\mathbf{m}_{0}\right)\right] \operatorname{Im}\left(\frac{\mathrm{d} F}{\mathrm{~d} \mathbf{m}}\left(\mathbf{m}_{0}\right)\right)\right]\right\} .\right.
$$

Let p_{0} be the minimizer of $\frac{\left|\operatorname{Trace}\left(\mathcal{L} \circ\left(\mathbf{d d}^{T}-\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}\right)\right)\right|}{\left.\lambda_{\min } \widetilde{R}^{T} \mathcal{L} \widetilde{R}\right)}$, we denote this ratio by $\frac{\sigma}{\lambda}$. p_{0} is data dependent so it needs to be calculated every time.

Summarizing the algorithm

Input: data d, inaccurate forward operator \tilde{F}, initial guess $\mathbf{m}_{\mathbf{0}}$.

- lift the date to a matrix $\mathbf{d d}^{\top}$.
- Find the p that minimizes the ratio $\frac{\left|\operatorname{Trace}\left(P_{\Omega}\left(\mathbf{d d}^{T}-\tilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}\right)\right)\right|}{\lambda_{\text {min }}\left(\tilde{R}^{T} \mathcal{L} \tilde{R}\right)}$.
- Use the minimizer p_{0} to generate the random fitting index set Ω.
- Solve $\min L \equiv\left\|\left(P_{\Omega}+\lambda\left(P_{D}\right)\right)\left(\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}-\mathbf{d d}^{\mathbf{T}}\right)\right\|_{\mathbf{F}}^{\mathbf{2}}$, by the L-BFGS algorithm with hand calculated gradient

$$
\frac{\mathrm{d} L}{\mathrm{~d} \mathbf{m}}=2\left(\frac{\mathrm{~d} F}{\mathrm{~d} \mathbf{m}}\right)^{T}\left(\left(P_{\Omega}+\lambda\left(P_{D}\right)\right)\left(\widetilde{F}(\mathbf{m}) \widetilde{F}(\mathbf{m})^{T}-\mathbf{d d}^{T}\right) \widetilde{F}(\mathbf{m})\right.
$$

An example

2-D frequency domain full waveform inversion:

- grid size 51×51, model size $510 m \times 510 m$;
- equally distributed sources and receivers near surface;
- Narrowbanded data: $f=[15,20,25]$;
- Horizontal perturbation of source and receiver with variance $2 m$;
- 30 Hz peak frequency of the Ricker wavelet;
- Vertical variable velocity

- Use L-BFGS for both least square and interferometric methods.

The best p

Figure : $\frac{\sigma}{\lambda}$ as a function of p.

Reconstruction Result

Figure : results after 10 iterations. 6 sources on the left and 800 receivers on the right, frequencies in use: $[20,25,30], \lambda=100$.

Figure : results after 10 iterations. 3 sources on the left, 3 sources on the right, and 400 receivers in the middle, frequencies in use: $[20,25,30], \lambda=100$.

Figure : results after 20 iterations. 3 sources on the left, 3 sources on the right, and 400 receivers in the middle, frequencies in use: $[20,25,30], \lambda=100$.

True Image

Least square solution

Initial Guess

Interferometric Solution

Figure : results when the algorithm stops. 3 sources on the left, 3 sources on the right, and 400 receivers in the middle, frequencies in use: $[20,25,30], \lambda=10 . e_{L S} \approx 3.5 e_{I F}$.

Future work

- Explore ways to reduce the computational cost;
- Extend the method to linear model;
- Extend the incoherent interferometric to coherent ones.

Acknowledgement

Thank you for your attention!

