Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

SLIM's findings on the Machar dataset Ning Tu, Tim Lin, Zhilong Fang, with contribution from many other SLIM members

SLIM 🗣 University of British Columbia

Imaging seismic structure

Acquisition geometry

- Sources and receivers lies on irregular grid. • # of source is 330 with an approximate spacing of 50 m
- # of receiver is 505 with an approximate spacing of 25 m

18300 (m)

n)		17425(m)
ottom depth 95m)	15512(m)	

Source receiver mask of processed data

acquisition mask

Wave velocity field [provided by BP, with anisotropy correction, after interpolation and smoothing]

Water 0m–95m

Slow rock 95m–3000m

-3000m Salt & fast rock 3000m+

Imaging-RTM

Reverse time migration:

all sources, all freq. up to 30F aliasing), 10m grid spacing

Il sources, all freq. up to 30Hz (higher freq. suffer from spacial

Original seismic data

about 25m spatial sampling, 370 traces

Zoomed in

Time (s)

F-K (2D Fourier) spectrum

F-K nearest neighbor spectrum

spatial aliasing of wavefronts

Remove imaging artifacts

We use a cropped section of the model to reduce the turnaround time:

- first reproduce the artifacts
- then try to remove them by interpolating the data

Artifacts reproduced with cropped model

Desired sampling

Desired sampling after interpolation, 10m spacing

Exploiting spatially irregular sampling

Histogram of trace irregularity

-8m

+8m

Trace interpolation via curevelet-domain basis pursuit

- $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is) $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$ Z
- ℓ_1 -norm as convex measure of sparsity
- **y** is data with original spatial sampling
- A is trace restriction ('subsampling operator')
- **x** is a seismic wavefield with desired sampling
- \mathbf{z} is a choice of curvelet coefficients that reconstructs \mathbf{X} • **D** is curvelet synthesis operator

Regularization + Interpolation

- Using non-uniform FFT as measurement operator A Fourier coefficients)
- Fourier coefficients

(maps coarse *non-uniform* spatial grid -> fine *uniform* grid 2D

Curvelet dictionary D constructed directly from uniform 2D

F-K spectrum before interpolation

F-K spectrum after interpolation

F-K spectrum masking

Original seismic data

about 25m spatial sampling, 370 traces

Final interpolated wavefield

10m spatial sampling, 925 traces

Zoomed in

Time (s)

Zoomed in

Time (s)

Reverse-time migrated image

[all freq. in 5-30Hz, all sources, 10m grid distance]

free of artifacts

Reverse-time migrated image

[all freq. in 5-60Hz, all sources, 5m grid distance]

Remarks

- The ringing artifacts in the high-velocity-contrast zone are caused by spacial aliasing in the data.
- We will extend the interpolation and imaging to the entire model (work in progress).

Imaging-L1 migration

- source estimation on the fly

using dimensionality reduction to reduce computational cost

Setup

- use the cropped model to reduce the turnaround time
- no freq. subsampling, 50% source subsampling, 20 iterations

luce the turnaround time urce subsampling, 20 iterations

L1 migration w. source estimation, aliased data

L1 migration w. impulsive source, aliased data

L1 migration w. source estimation, de-aliased data

L1 migration w. impulsive source, de-aliased data

Remarks

- Source wavelet is not important *per se*, but import for correctly inverting the image (a.k.a, nuisance parameter). On-the-fly source estimation greatly improves image quality.

Progress and future plan

- RTM of the entire dataset using frequencies up to 60Hz. Currently in progress.
- promoting migration.
- Working directly on the unprocessed pressure and particle velocity wavefield, with Robust EPSI and imaging-withmultiples implementations.

Optimizing the subsampling strategy for more efficient sparsity-

RTM of the entire model using iWave

Lateral distance(m)

Acknowledgements

We would like to thank BP for sharing this Machar dataset with us and granting us the permission to show this work.

And thanks for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

