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Current challenges in 4D

» Repeatability of 4D seismic experiments

- effort spent to repeat baseline and monitor surveys
- processing decisions - should we apply similar or different processing to both data?
- how do processing decisions depend on the data and the 4D signal?

» Detectability of 4D signal

- very weak signals pose a challenge - hard to detect
- 4D noise level impact on the signal quality
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- effort spent to repeat baseline and monitor surveys
- processing decisions - should we apply similar or different processing to both data?
- how do processing decisions depend on the data and the 4D signal?

» Resolution of 4D signals

- how can we better detect and improve the signal-to-noise ratios of 4D signals ?

» would like to reduce the acquisition cost of a 4D project

Big Question ???

» Should we perform randomized acquisition for a 4D project ?
» Should we repeat the acquisition or not ?
» What is the net effect on the 4D signal?
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Numerical Experiment
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Numerical Experiment
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100% Repeated Seismic = Same Acquisition Geometry
Regularly and Densely Sampled
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CS in 4D - first approach

transform

Measurement
matrix

In general A. — ]l:{MSE 5 Sparsifying

Restriction «

observed < y p— A_X »  Unknown vector
data (sparse representation

of data)

Solve  x =argminl|x|; s.t. y=Ax

X

In4D
let M be the identity basis

A1 — ];{11\/18>|< and A.2 — RQMS*

measure Y1 =Ai1x; and y, = Asxs

Trued4Dsignal: S* (x; —x2) ( baseline - monitor )

Estimated 4D signal: S* (x; — x»)

observe random
measurements for
baseline

observe a different
random set of
measurements for
monitor

reconstruct for each
independently by using
the sparsity recovery
algorithm

4D signal is the
difference of the
reconstructed signals




SAME Geometry —regularly & densely sampled -
IDEAL but UNREALISTIC CASE
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Result: 25% INDEPENDENT missing shots from each

vintage
Result: OK
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Result: 40% INDEPENDENT missing shots from each

vintage
Result: Not OK
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Motivation

e Time-lapse wavefields are compressible in the curvelet domain
e They have a lot of information in common

e Can we exploit this common shared information to make more efficient
use of measurements?

e Can we use a model that jointly represents the wavefields.




An Information-Theoretic Approach to Distributed Compressed
Sensing (2005)

by Dror Baron , Marco F. Duarte , Shriram Sarvotham , Michael B. Wakin , Richard G. Baraniuk

Joint reconstruction model (JRM)

» Reconstruction of two or more signals
» Each of the signal is compressible
» The joint representation of the signals is compressible
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An Information-Theoretic Approach to Distributed Compressed
Sensing (2005)

by Dror Baron , Marco F. Duarte , Shriram Sarvotham , Michael B. Wakin , Richard G. Baraniuk

Joint reconstruction model
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Result: 50% INDEPENDENT missing shots from each
vintage (JRM)
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Result: 40% INDEPENDENT missing shots from each
vintage (JRM)
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Independent vs joint reconstruction

“independent CS recovery” “joint CS recovery”

“ideal 4D signal” 257% missing 40% missing
from each vintage from each vintage
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Generalization to more than 2 vintages

e |mprovement in reconstruction quality for each signal
e |Improved 4D signal reconstruction

e Joint representation enables reconstruction of each wavefield with
fewer measurements from each survey




Conclusions

 resolving 4D changes depends on the subsampling ratio during

randomized sampling
o careful planning of 4D project in mind, with randomized sampling,

can save cost
e we can reconstruct 4D differences accurately without having to take

the same set of measurements - we don’t necessarily have to spend
efforts repeating the surveys




Future Plan

e Detection of weak and strong 4D changes in noisy environments with
high subsampling ratios
e Understand different sampling scenarios
e we chose the subsampling ratios to be the same
e Incorporate joint reconstruction into wave-equation based inversion
e Extension to other realistic acquisitions including marine




Future Work - where are we going with this?

e Extension to other randomized acquisition scenarios- simultaneous
shot acquisition for marine, with OBNs or OBCs
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http://tle.geoscienceworld.org/content/32/5/514/



http://tle.geoscienceworld.org/content/32/5/514/
http://tle.geoscienceworld.org/content/32/5/514/

Acknowledgements

e Thanks to the following people

» Felix Herrmann
» Haneet Wason
» Ernie Esser

e And Finally,




Acknowledgements

e Thank you for your attention!

MERCI!!! SIYANBONGA!!! DANKIE!!!!

S }N B AD This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery
Grant (22R81254) and the Collaborative Research and Development Grant DNOISE Il (375142-08). This research was

carried out as part of the SINBAD Il project with support from the following organizations: BG Group, BGP, BP, CGG,
Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.




