Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Estimating 4D *differences* in time-lapse using *randomized* sampling techniques Felix Oghenekohwo, Ernie Esser and Felix Herrmann

Current challenges in 4D

Repeatability of 4D seismic experiments

- effort spent to repeat baseline and monitor surveys
- —
- how do processing decisions depend on the data and the 4D signal?

Detectability of 4D signal

- very weak signals pose a challenge hard to detect
- 4D noise level impact on the signal quality

processing decisions - should we apply similar or different processing to both data?

- Need for repeatability ?
 - effort spent to repeat baseline and monitor surveys -
 - -
 - how do processing decisions depend on the data and the 4D signal?
- Resolution of 4D signals
- Would like to *reduce* the acquisition *cost* of a 4D project

processing decisions - should we apply similar or different processing to both data?

- how can we better *detect* and *improve* the signal-to-noise ratios of 4D signals?

- Need for repeatability ?
 - effort spent to repeat baseline and monitor surveys -
 - -
 - how do processing decisions depend on the data and the 4D signal?
- Resolution of 4D signals
- would like to reduce the acquisition cost of a 4D project

Big Question ???

processing decisions - should we apply similar or different processing to both data?

- how can we better *detect* and *improve* the signal-to-noise ratios of 4D signals?

- Need for Repeatability ?
 - effort spent to repeat baseline and monitor surveys -
 - -
 - how do processing decisions depend on the data and the 4D signal?
- Resolution of 4D signals
- would like to reduce the acquisition cost of a 4D project

Big Question ???

- Should we repeat the acquisition or not ?
- What is the net effect on the 4D signal?

processing decisions - should we apply similar or different processing to both data?

- how can we better *detect* and *improve* the signal-to-noise ratios of 4D signals?

Should we perform **randomized** acquisition for a 4D project ?

Current Practice

- Acquire data for baseline
- Try to repeat acquisition geometry for *monitor*
- Process baseline and monitor data
- Subtract to observe 4D signal

Conventional acquisition

Sequential shot acquisition

Repeatability

Baseline

Monitor

Sequential shot

acquisition

in

Geometry

Proposed acquisition

Acquisition with Randomized Missing Shots

Repeatability

Baseline

in **Randomness?** Acquisition with DIFFERENT Randomized Missing Shots

Monitor

Numerical Experiment

For Baseline model

- (Proposed Setup) randomized acquisition with missing shots
 - we require the fully and coarsely sampled data on a regular grid
 - apply Compressed Sensing (CS)

Numerical Experiment

For Baseline model

- (Proposed Setup) randomized acquisition with missing shots
 - we require the fully and coarsely sampled data on a regular grid
 - apply Compressed Sensing (CS)

For Monitor

- use a *different* randomized acquisition geometry?
 - we require the fully and coarsely sampled data on a regular grid
 - apply CS

100% Repeated Seismic = Same Acquisition Geometry Regularly and Densely Sampled

CS in 4D – first approach

In 4D

let \mathbf{M} be the identity basis

 $\mathbf{A}_1 = \mathbf{R}_1 \mathbf{M} \mathbf{S}^*$ and $\mathbf{A}_2 = \mathbf{R}_2 \mathbf{M} \mathbf{S}^*$

measure $\mathbf{y}_1 = \mathbf{A}_1 \mathbf{x}_1$ and $\mathbf{y}_2 = \mathbf{A}_2 \mathbf{x}_2$

True 4D signal : $\mathbf{S}^* (\mathbf{x}_1 - \mathbf{x}_2)$ (baseline - monitor)Estimated 4D signal : $\mathbf{S}^* (\tilde{\mathbf{x}_1} - \tilde{\mathbf{x}_2})$

- observe random measurements for baseline
- observe a *different* random set of
 measurements for
 monitor
- reconstruct for each independently by using the sparsity recovery algorithm
- 4D signal is the difference of the reconstructed signals

SAME Geometry – regularly & densely sampled – IDEAL but UNREALISTIC CASE

Result: 25% INDEPENDENT missing shots from each vintage

Result: OK

Result: 40% INDEPENDENT missing shots from each vintage

Result: Not OK

- *Time*-lapse wavefields are compressible in the curvelet domain
- They have a lot of *information* in *common*
- Can we *exploit* this common **shared** information to make more *efficient* use of measurements?
- Can we use a model that *jointly* represents the wavefields.

pressible in the curvelet domain in *common*

An Information-Theoretic Approach to Distributed Compressed Sensing (2005)

by Dror Baron , Marco F. Duarte , Shriram Sarvotham , Michael B. Wakin , Richard G. Baraniuk

Joint reconstruction model (JRM)

- Reconstruction of two or more signals
- *Each* of the signal is *compressible*
- The *joint* representation of the signals is *compressible*

$$\mathbf{A}_1 = \mathbf{R}_1 \mathbf{M} \mathbf{S}^*$$
 and

$$\mathbf{y}_1 = \mathbf{A}_1 \mathbf{x}_1$$
 and

Rewrite

$$\mathbf{x}_1 = \mathbf{z}_0 + \mathbf{z}_1$$
$$\mathbf{x}_2 = \mathbf{z}_0 + \mathbf{z}_2$$

common shared support

 $\mathbf{A}_2 = \mathbf{R}_2 \mathbf{M} \mathbf{S}^*$

 $\mathbf{y}_2 = \mathbf{A}_2 \mathbf{x}_2$

> *unique* part

An Information-Theoretic Approach to Distributed Compressed Sensing (2005)

by Dror Baron , Marco F. Duarte , Shriram Sarvotham , Michael B. Wakin , Richard G. Baraniuk

Joint reconstruction model

$$\mathbf{x}_1 = \mathbf{z}_0 + \mathbf{z}_1$$
$$\mathbf{x}_2 = \mathbf{z}_0 + \mathbf{z}_2$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{A}_1 & \mathbf{0} \\ \mathbf{A}_2 & \mathbf{0} & \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Z}_0 \\ \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{bmatrix} = \mathbf{A}_2 \mathbf{C} \mathbf{C}_1 \mathbf{C}_2 \mathbf{C}_$$

$$\tilde{\mathbf{z}} = \underset{\mathbf{z}}{\operatorname{arg\,min}} \|\mathbf{z}\|_{1} \quad \text{s.t. } \mathbf{y}$$
$$\tilde{\mathbf{z}} = \begin{bmatrix} \tilde{\mathbf{z}_{0}} \\ \tilde{\mathbf{z}_{1}} \\ \tilde{\mathbf{z}_{2}} \end{bmatrix} \quad \tilde{\mathbf{x}_{1}} = \mathbf{x}$$

Estimated 4D signal : $\mathbf{S}^* \left(\tilde{\mathbf{x}_1} - \tilde{\mathbf{x}_2} \right)$

 $\mathbf{y} = \mathbf{A}\mathbf{z}$

 $= \widetilde{\mathbf{z}_0} + \widetilde{\mathbf{z}_1}$ $\widetilde{\mathbf{x}_2} = \widetilde{\mathbf{z}_0} + \widetilde{\mathbf{z}_2}$

SAME geometry – regularly & densely sampled – **IDEAL ČASE**

Result: 50% INDEPENDENT missing shots from each vintage (JRM)

Result: 40% INDEPENDENT missing shots from each vintage (JRM)

Independent vs joint reconstruction

"ideal 4D signal"

"independent CS recovery"

25% missing from each vintage

"joint CS recovery" 40% missing from each vintage

Generalization to more than 2 vintages

- Improvement in reconstruction quality for each signal
- Improved 4D signal reconstruction
- Joint representation enables reconstruction of each wavefield with fewer measurements from each survey

Conclusions

- resolving 4D changes depends on the *subsampling* ratio during randomized sampling
- careful planning of 4D project in mind, with randomized sampling, can save cost
- we can reconstruct 4D differences accurately without having to take the same set of measurements - we don't necessarily have to spend efforts repeating the surveys

Future Plan

- Detection of *weak* and *strong* 4I
 high subsampling *ratios*
- Understand different sampling scenarios
 - we chose the subsampling ratios to be the same
- Incorporate joint reconstruction into wave-equation based inversion
- Extension to other realistic acquisitions including marine

• Detection of weak and strong 4D changes in noisy environments with

Future Work - where are we going with this?

shot acquisition for marine, with OBNs or OBCs

• Extension to other randomized acquisition scenarios- simultaneous

http://tle.geoscienceworld.org/content/32/5/514/

Acknowledgements

- Thanks to the following people
 - Felix Herrmann
 - Haneet Wason
 - Ernie Esser
- And Finally,

Acknowledgements

• Thank you for your attention!

MERCI!!! SIYANBONGA!!!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

DANKIE!!!!

