Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

A dual approach for PhaseLift

Michael Friedlander mpf@cs.ubc.ca lves Macêdo ijamj@cs.ubc.ca

University of British Columbia Department of Computer Science Scientific Computing Laboratory

SINBAD Consortium Meeting Fall 2013 Whistler, December 3, 2013

Linear inverse problems

$$F: \mathbb{C}^N \longrightarrow \mathbb{C}^D$$
 (linear forward/modeling operator)
 $m \longmapsto d = Fm$ (observed data)

• Reverse Time Migration (RTM)

 $m_{RTM} := F^* d$

• Least-Squares Migration (LSM)

$$m_{LSM} := \operatorname*{arg\,min}_{m \in \mathbb{C}^N} \frac{1}{2} \|Fm - d\|_2^2 \quad \left[= (F^*F)^{-1} F^* d\right]$$

where F^* is the adjoint operator

A case for quadratic measurements

- Borcea, Papanicolaou, Tsogka (Inverse Problems 2005)
 Coherent INTerferometric migration: m_{INT} := diag(F*(E \circ dd*)F)
- Chai, Moscoso, Papanicolaou (Inverse Problems 2011) Candès, Eldar, Strohmer, Voroninski (SIIMS 2013) Phaseless measurements: $diag(|d_1|^2, |d_2|^2, ..., |d_M|^2) \approx diag((Fm)(Fm)^*)$
- Jugnon, Demanet (SEG 2013) Interferometric inversion: find $m \in \mathbb{C}^N$ such that $d_i \overline{d_j} \approx (Fm)_i \overline{(Fm)_j}$

Matrix lifting or, making it linear again!

find $m \in \mathbb{C}^N$ such that

 $(F(mm^*)F^*)_{i_kj_k} \approx (dd^*)_{i_kj_k} \quad \stackrel{M=mm^*}{\longleftrightarrow} \quad k = 1, \dots, K$

find $M \in \mathbb{C}^{N \times N}$ such that $(FMF^*)_{i_k j_k} \approx (dd^*)_{i_k j_k}$ $k = 1, \dots, K$ $M = M^*, M \succcurlyeq 0$ rank M = 1

Matrix lifting

or, making it linear again!

find $M \in \mathbb{C}^{N \times N}$ such that $(FMF^*)_{i_k j_k} \approx (dd^*)_{i_k j_k}$ $k = 1, \dots, K$

 $M = M^*$. $M \geq 0$

rank M = 1

<u>rank M=1</u> → $\begin{array}{ll} \underset{M \in \mathcal{H}^{N \times N}}{\text{minimize}} & \text{trace } M\\ \text{subject to}\\ (FMF^*)_{i_k j_k} \approx (dd^*)_{i_k j_k}\\ k = 1, \ldots, K\\ M \succcurlyeq 0 \end{array}$

Matrix lifting

or, making it linear again!

$$\begin{array}{ll} \underset{M \in \mathcal{H}^{N \times N}}{\text{minimize}} & \text{trace } M & \underset{M \in \mathcal{H}^{N \times N}}{\text{minimize}} & \text{trace } M \\ \text{subject to} & & \text{subject to} \\ (FMF^*)_{i_k j_k} \approx (dd^*)_{i_k j_k} & \xleftarrow{\text{notation}} & \mathcal{F}M \approx b \\ k = 1, \dots, K & & M \succcurlyeq 0 \\ M \succcurlyeq 0 & & & & \\ \end{array}$$

Matrix lifting

or, making it linear again!

$$\begin{aligned} \mathcal{F} &: \mathcal{H}^{N \times N} \longrightarrow \mathbb{C}^{K} \\ M &\longmapsto (FMF^{*})_{i_{k}j_{k}} \end{aligned} \qquad \text{linear operator!}$$

$$\mathcal{F}^*: \mathbb{C}^{\mathsf{K}} \longrightarrow \mathcal{H}^{\mathsf{N} \times \mathsf{N}} \qquad \qquad \mathsf{adjoint map}$$

Challenges or, the cost of linearity...

Challenges or, the cost of linearity...

Challenges

or, the cost of linearity...

The convexified formulation in (5) is too costly to solve at the scale of even toy problems. Let N be the total number of degrees of freedom of your unknown model m; then the variable M of (5) is a $N \times N$ matrix, on which we want to impose positive semi-definiteness and approximate fit. As of 2013 and to our knowledge, there is no time-efficient and memory-efficient algorithm to solve this type of semi-definite program when N ranges from 10^4 to 10^6 . Jugnon, Demanet (SEG 2013)

A measurement-centric perspective

or, what if K is (roughly) on the order of N?

Primal:

 $\underset{M \in \mathcal{H}^{N \times N}}{\text{minimize}} \quad \text{trace } M \quad \text{subject to} \quad \|b - \mathcal{F}M\| \leqslant \sigma \text{ and } M \succcurlyeq 0$

Lagrangian dual:

 $\underset{y \in \mathbb{C}^{K}}{\text{maximize}} \quad \Re\langle y, b \rangle - \sigma \|y\|_{*} \quad \text{subject to} \quad \lambda_{\max}(\mathcal{F}^{*}y) \leqslant 1$

Gauge dual:[Freund (Math. Prog. 1987); Friedlander, M., Pong (arXiv 2013)]minimize $\lambda_{max}(\mathcal{F}^*y)$ subject to $\Re\langle y, b \rangle - \sigma ||y||_* \ge 1$

Primal from dual

or, how does this solve my problem?

If $Q_{max} \in \mathbb{C}^{N \times r_{max}}$ matrix of λ_{max} -eigvecs of $\mathcal{F}^* y_{opt}$, then $M_{opt} = Q_{max} S_{opt} Q^*_{max}$,

$$S_{opt} \in \underset{\substack{S \in \mathcal{H}^{rmax \times rmax} \\ S \succcurlyeq 0}}{\arg \min} \| c - \mathcal{F}_{reduced} S \|,$$

where
$$\mathcal{F}_{reduced} := \mathcal{F}(Q_{max} \cdot Q^*_{max})$$
 and $c := b - \sigma rac{y_{opt}}{\|y_{opt}\|_*}$

Typically,
$$r_{max} \ll N \ll N^2$$
 !

or, solid and customizable hammers for convex nails...

$$\min_{\mathfrak{R}\langle y,b\rangle-\sigma\|y\|_*\geq 1}\left\{\lambda_{\max}(\mathcal{F}^*y)\right\}$$

Proximal point method:

Gauge dual:

$$y^{k+1} := \arg\min_{\Re\langle y, b\rangle - \sigma ||y||_* \ge 1} \left\{ \lambda_{\max}(\mathcal{F}^* y) + \frac{1}{2\tau} \left\| y - y^k \right\|_H^2 \right\}$$

Proximal bundle method:

$$\hat{y}^{k+1} := \operatorname*{arg\,min}_{\Re\langle y,b\rangle - \sigma \|y\|_* \ge 1} \left\{ \max_{j} \left\{ \lambda_{max} \left(Q_j^* (\mathcal{F}^* y) Q_j \right) \right\} + \frac{1}{2\tau_k} \left\| y - y^k \right\|_{H_k}^2 \right\}$$

or, solid and customizable hammers for convex nails...

The good:

- Provably convergent
- Bundle $\left\{ Q_j \in \mathbb{C}^{N imes r_j}
 ight\}_{j \in J}$ is very flexible w.r.t. both J and r_j
- Huge eigen-matrix-inequality substituted by a handful of tiny ones
- Admits Lanczos-based large-scale solvers, i.e. just need to code $(\mathcal{F}^*y)x$
- Known to compare well against other methods for nonsmooth convex programs

or, solid and customizable hammers for convex nails...

The bad:

- Worst-case theoretical bounds far from theoretical optimal
- Uniformly "too small" J and r_j may impact speed

or, solid and customizable hammers for convex nails...

The ugly:

- May require custom-tailored subproblem solvers for "production code"
- Require storage and "clever" management of the bundle

Case study: PhaseLift X-ray crystallography

Candès, Eldar, Strohmer, Voroninski (SIIMS 2013)

Phaseless measurements

- $m \in \mathbb{R}^{n imes n}$ is a "latent" image
- we are provided with illumination patterns $f_p \in \mathbb{C}^{n imes n}, i = 1, \dots, P$
- observables are magnitudes of Fourier coefficients $\left|\widehat{f_{p}\circ m}\right|^{2}$
- $N = n^2$ and K = PN
- Our (noisefree) experiments: n = 256, N = 65536, P = 8 (complex Gaussians) and K = 524288

Case study: PhaseLift Ground-truth vs. our reconstruction

Case study: PhaseLift Our reconstruction vs. error

Case study: PhaseLift Ground-truth vs. reconstruction from TFOCS

Case study: PhaseLift Reconstruction from TFOCS vs. error

Case study: PhaseLift TFOCS vs. our solver

	TFOCS	TFOCS	Ours
$\# (\mathcal{F}^* y) x$	7371	9941	7366
max # eig-pairs	2	10	2
total $\#$ eig-pairs	454	700	44
time	706s	486s	478s
$\ \hat{m} - m\ _2 / \ m\ _2$	$17.0 \cdot 10^{-2}$	$17.8 \cdot 10^{-2}$	$7.4 \cdot 10^{-2}$
$\ \hat{m} - m\ _1 / \ m\ _1$	$15.4 \cdot 10^{-2}$	$16.2 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$
$\ b-\mathcal{F}\hat{M}\ _2/\ b\ _2$	$17.6 \cdot 10^{-2}$	$19.7\cdot10^{-2}$	$9.9\cdot10^{-2}$
$\ b-\mathcal{F}\hat{M}\ _1/\ b\ _1$	$19.7 \cdot 10^{-2}$	$20.9 \cdot 10^{-2}$	$9.1 \cdot 10^{-2}$

The road ahead

- Inexact bundle for adaptive tolerances in eigensolver (i.e., less operator evals)
- Exploit primal-from-dual result and nonconvex heuristics for better bundles
- Approximate 2nd-order info to accelerate bundle convergence à la Helmberg, Overton, Rendl (Opt.-Online 2012)
- Exploit different problems and their structures to specialize into better methods
- Experiment and compare more...

Thank you!

A dual approach for PhaseLift

Michael Friedlander mpf@cs.ubc.ca lves Macêdo ijamj@cs.ubc.ca

University of British Columbia Department of Computer Science Scientific Computing Laboratory

SINBAD Consortium Meeting Fall 2013 Whistler, December 3, 2013