A dual approach for PhaseLift

Michael Friedlander
mpf@cs.ubc.ca

Ives Macêdo
ijamj@cs.ubc.ca

University of British Columbia Department of Computer Science Scientific Computing Laboratory

SINBAD Consortium Meeting Fall 2013
Whistler, December 3, 2013

Linear inverse problems

$$
\begin{aligned}
F: \mathbb{C}^{N} & \longrightarrow \mathbb{C}^{D} \\
m & \longmapsto d=F m
\end{aligned}
$$

(linear forward/modeling operator) (observed data)

- Reverse Time Migration (RTM)

$$
m_{R T M}:=F^{*} d
$$

- Least-Squares Migration (LSM)

$$
m_{L S M}:=\underset{m \in \mathbb{C}^{N}}{\arg \min } \frac{1}{2}\|F m-d\|_{2}^{2} \quad\left[=\left(F^{*} F\right)^{-1} F^{*} d\right]
$$

where F^{*} is the adjoint operator

A case for quadratic measurements

- Borcea, Papanicolaou, Tsogka (Inverse Problems 2005) Coherent INTerferometric migration: $m_{I N T}:=\operatorname{diag}\left(F^{*}\left(E \circ d d^{*}\right) F\right)$
- Chai, Moscoso, Papanicolaou (Inverse Problems 2011) Candès, Eldar, Strohmer, Voroninski (SIIMS 2013) Phaseless measurements: $\operatorname{diag}\left(\left|d_{1}\right|^{2},\left|d_{2}\right|^{2}, \ldots,\left|d_{M}\right|^{2}\right) \approx \operatorname{diag}\left((F m)(F m)^{*}\right)$
- Jugnon, Demanet (SEG 2013)

Interferometric inversion: find $m \in \mathbb{C}^{N}$ such that $d_{i} \overline{d_{j}} \approx(F m)_{i} \overline{(F m)_{j}}$

Matrix lifting

or, making it linear again!
find $\quad m \in \mathbb{C}^{N}$
such that

$$
\begin{aligned}
& \left(F\left(m m^{*}\right) F^{*}\right)_{i_{k} j_{k}} \approx\left(d d^{*}\right)_{i_{k} j_{k}} \quad \stackrel{M=m m^{*}}{\Longleftrightarrow} \\
& k=1, \ldots, K
\end{aligned}
$$

find $\quad M \in \mathbb{C}^{N \times N}$
such that

$$
\begin{aligned}
& \left(F M F^{*}\right)_{i_{k} j_{k}} \approx\left(d d^{*}\right)_{i_{k} j_{k}} \\
& k=1, \ldots, K \\
& M=M^{*}, M \succcurlyeq 0 \\
& \operatorname{rank} M=1
\end{aligned}
$$

Matrix lifting

or, making it linear again!
find $\quad M \in \mathbb{C}^{N \times N}$
such that
$\left(F M F^{*}\right)_{i_{k} j_{k}} \approx\left(d d^{*}\right)_{i_{k} j_{k}}$

$$
\xrightarrow{\operatorname{rank} M=1}
$$

$$
k=1, \ldots, k
$$

$$
M=M^{*}, M \succcurlyeq 0
$$

$$
\operatorname{rank} M=1
$$

minimize trace M $M \in \mathcal{H}^{N \times N}$
subject to
$\left(F M F^{*}\right)_{i_{k} j_{k}} \approx\left(d d^{*}\right)_{i_{k} j_{k}}$
$k=1, \ldots, K$
$M \succcurlyeq 0$

Matrix lifting

or, making it linear again!

$\underset{M \in \mathcal{H}^{N \times N}}{\operatorname{minimize}} \operatorname{trace} M$	$\operatorname{minimize}_{M \in \mathcal{H}^{N \times N}}$ subject to	trace M
$\left(F M F^{*}\right)_{i_{k} j_{k}} \approx\left(d d^{*}\right)_{i_{k} j_{k}}$	$\stackrel{\text { notation }}{ }$	$\mathcal{F} M$ $k=1, \ldots, K$
$M \succcurlyeq 0$		$M \succcurlyeq 0$

Matrix lifting

or, making it linear again!

$$
\begin{array}{rlr}
\operatorname{minimize}_{M \in \mathcal{H}^{N \times N}} & \operatorname{trace} M & \text { subject to } \\
& \mathcal{F} M \approx b \text { and } M \succcurlyeq 0 \\
\mathcal{F}: \mathcal{H}^{N \times N} & \longrightarrow \mathbb{C}^{K} & \\
M & \longmapsto\left(F M F^{*}\right)_{i_{k} j_{k}} & \text { linear operator! } \\
\mathcal{F}^{*}: \mathbb{C}^{K} & \longrightarrow \mathcal{H}^{N \times N} & \text { adjoint map }
\end{array}
$$

Challenges

or, the cost of linearity...
nonlinear program in \mathbb{C}^{N}
vs. linear-conic program in $\mathcal{H}^{N \times N}$

Challenges

or, the cost of linearity...
nonlinear program in \mathbb{C}^{N}
vs. linear-conic program in $\mathcal{H}^{N \times N}$

Challenges

or, the cost of linearity...

The convexified formulation in (5) is too costly to solve at the scale of even toy problems. Let N be the total number of degrees of freedom of your unknown model m; then the variable M of (5) is a $N \times N$ matrix, on which we want to impose positive semi-definiteness and approximate fit. As of 2013 and to our knowledge, there is no time-efficient and memory-efficient algorithm to solve this type of semi-definite program when N ranges from 10^{4} to 10^{6}. Jugnon, Demanet (SEG 2013)

A measurement-centric perspective

or, what if K is (roughly) on the order of N ?

Primal:

$\operatorname{minimize}_{M \in \mathcal{H}^{N \times N}} \quad \operatorname{trace} M$ subject to $\|b-\mathcal{F} M\| \leqslant \sigma$ and $M \succcurlyeq 0$

Lagrangian dual:

$$
\underset{y \in \mathbb{C}^{K}}{\operatorname{maximize}} \quad \Re\langle y, b\rangle-\sigma\|y\|_{*} \quad \text { subject to } \quad \lambda_{\max }\left(\mathcal{F}^{*} y\right) \leqslant 1
$$

Gauge dual: [Freund (Math. Prog. 1987); Friedlander, M., Pong (arXiv 2013)]

$$
\underset{y \in \mathbb{K}}{\operatorname{minimize}} \quad \lambda_{\max }\left(\mathcal{F}^{*} y\right) \quad \text { subject to } \quad \mathfrak{R}\langle y, b\rangle-\sigma\|y\|_{*} \geqslant 1
$$

Primal from dual

or, how does this solve my problem?

If $Q_{\text {max }} \in \mathbb{C}^{N \times r_{\text {max }}}$ matrix of $\lambda_{\text {max }}$-eigvecs of $\mathcal{F}^{*} y_{\text {opt }}$, then $M_{\text {opt }}=Q_{\text {max }} S_{\text {opt }} Q_{\text {max }}^{*}$,
where $\mathcal{F}_{\text {reduced }}:=\mathcal{F}\left(Q_{\max } \cdot Q_{\max }^{*}\right)$ and $c:=b-\sigma \frac{y_{\text {opt }}}{\left\|y_{\text {opt }}\right\|_{*}}$

$$
\text { Typically, } \quad r_{\max } \lll N \ll N^{2} \text { ! }
$$

Bundle methods in a nutshell

 or, solid and customizable hammers for convex nails. . .Gauge dual:

$$
\min _{\mathfrak{R}\langle y, b\rangle-\sigma\|y\|_{*} \geqslant 1}\left\{\lambda_{\max }\left(\mathcal{F}^{*} y\right)\right\}
$$

Proximal point method:

$$
y^{k+1}:=\underset{\mathfrak{x}\left\{(y, b\rangle-\sigma\| \| y \|_{*} \geqslant 1\right.}{\arg \min }\left\{\lambda_{\max }\left(\mathcal{F}^{*} y\right)+\frac{1}{2 \tau}\left\|y-y^{k}\right\|_{H}^{2}\right\}
$$

Proximal bundle method:

$$
\hat{y}^{k+1}:=\underset{\mathfrak{M}(y, b)-\sigma\|y\| \geqslant \geqslant 1}{\arg \min }\left\{\max _{j}\left\{\lambda_{\max }\left(Q_{j}^{*}\left(\mathcal{F}^{*} y\right) Q_{j}\right)\right\}+\frac{1}{2 \tau_{k}}\left\|y-y^{k}\right\|_{H_{k}}^{2}\right\}
$$

Bundle methods in a nutshell

or, solid and customizable hammers for convex nails. . .

The good:

- Provably convergent
- Bundle $\left\{Q_{j} \in \mathbb{C}^{N \times r_{j}}\right\}_{j \in J}$ is very flexible w.r.t. both J and r_{j}
- Huge eigen-matrix-inequality substituted by a handful of tiny ones
- Admits Lanczos-based large-scale solvers, i.e. just need to code $\left(\mathcal{F}^{*} y\right) x$
- Known to compare well against other methods for nonsmooth convex programs

Bundle methods in a nutshell

 or, solid and customizable hammers for convex nails. . .
The bad:

- Worst-case theoretical bounds far from theoretical optimal
- Uniformly "too small" J and r_{j} may impact speed

Bundle methods in a nutshell

or, solid and customizable hammers for convex nails. . .

The ugly:

- May require custom-tailored subproblem solvers for "production code"
- Require storage and "clever" management of the bundle

Case study: PhaseLift

X-ray crystallography

Candès, Eldar, Strohmer, Voroninski (SIIMS 2013)

Phaseless measurements

- $m \in \mathbb{R}^{n \times n}$ is a "latent" image
- we are provided with illumination patterns $f_{p} \in \mathbb{C}^{n \times n}, i=1, \ldots, P$
- observables are magnitudes of Fourier coefficients $\left|\widehat{f_{p} \circ m}\right|^{2}$
- $N=n^{2}$ and $K=P N$
- Our (noisefree) experiments: $n=256, N=65536, P=8$ (complex Gaussians) and $K=524288$

Case study: PhaseLift
Ground-truth vs. our reconstruction

Case study: PhaseLift
Our reconstruction vs. error

Case study: PhaseLift

Ground-truth vs. reconstruction from TFOCS

Case study: PhaseLift

Reconstruction from TFOCS vs. error

Case study: PhaseLift

TFOCS vs. our solver

	TFOCS	TFOCS	Ours				
$\#\left(\mathcal{F}^{*} y\right) x$	7371	9941	7366				
max \# eig-pairs	2	10	2				
total \# eig-pairs	454	700	44				
time	706 s	486 s	478 s				
$\\|\hat{m}-m\\|_{2} /\\|m\\|_{2}$	$17.0 \cdot 10^{-2}$	$17.8 \cdot 10^{-2}$	$7.4 \cdot 10^{-2}$				
$\\|\hat{m}-m\\|_{1} /\\|m\\|_{1}$	$15.4 \cdot 10^{-2}$	$16.2 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$				
$\\|b-\mathcal{F} \hat{M}\\|_{2} /\\|b\\|_{2}$	$17.6 \cdot 10^{-2}$	$19.7 \cdot 10^{-2}$	$9.9 \cdot 10^{-2}$				
$\\|b-\mathcal{F} \hat{M}\\|_{1} /\\|b\\|_{1}$	$19.7 \cdot 10^{-2}$	$20.9 \cdot 10^{-2}$	$9.1 \cdot 10^{-2}$				

The road ahead

- Inexact bundle for adaptive tolerances in eigensolver (i.e., less operator evals)
- Exploit primal-from-dual result and nonconvex heuristics for better bundles
- Approximate 2nd-order info to accelerate bundle convergence à la Helmberg, Overton, Rendl (Opt.-Online 2012)
- Exploit different problems and their structures to specialize into better methods
- Experiment and compare more...

Thank you!

©

A dual approach for PhaseLift

Michael Friedlander
mpf@cs.ubc.ca

Ives Macêdo
ijamj@cs.ubc.ca

University of British Columbia Department of Computer Science Scientific Computing Laboratory

SINBAD Consortium Meeting Fall 2013
Whistler, December 3, 2013

