Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

FWI from Vancouver: lessons learned from "Gulf of Mexico Imaging Challenge Part II: FWI, WEMVA, Workflows &... Dream team

SINBAD Consortium Meeting Fall 2013

Dream team

Felix J. Herrmann

UBC

UBC

Brendan Smithyman

Rajiv Kumar

Xiang Li

UBC

Ian Hanlon

Tristan van Leeuwen

Haneet Wason

Mostafa Javanmehri

GOM data set (released in 2012)

- 3201 shots with interval 25 m
- 801 receivers with interval 25 m, yielding 20km offset
- record time 14s, sample rate 4ms
- no surface related multiple, but free surface ghost
- isotropic elastic

One shot record

Preprocessing

Travel-time tomography based on hand-picked first breaks

Curvelet-denoising at selected low-frequencies improve SNR for FWI

initial velocity model

+

Initial model

ray based tomography from first breaks

Andrew J. Calvert

+

Ray paths [RMS traveltime misfit 11ms]

ray based tomography from first break

+

Curvelet denoise

Work on "frequency slices" in the source/offset plane

curvelet coefficients

Followed by debiasing to restore amplitudes...

• Find support by hand-selected thresholding of synthesis

+

Before denoising [real part 2Hz]

After denoising [real part 2Hz]

Difference

Before denoising [phase 2Hz]

After denoising [phase 2Hz]

Modified Gauss-Newton

algorithm for seismic waveform inversion", in Proc. SPIE, 2011, vol. 2011.

compressed sensing. Geophysics 77 (AI3), 2012.

algorithm for seismic waveform inversion. Proc. SPIE 8138, 81380V, 2011

- <u>F.J. Herrmann, X. Li, A.Y. Aravkin, and T. van Leeuwen, "A modified, sparsity promoting, Gauss-Newton</u>
- X. Li, F.J. Herrmann, A.Y. Aravkin and T. van Leeuwen Fast randomized full waveform inversion with
- F.J. Herrmann, X. Li, A.Y. Aravkin, and T. van Leeuwen <u>A modified, sparsity-promoting, Gauss-Newton</u>

+

Inversion setting

Modified Gauss-Newton:

- frequency continuation (10 bands, each band has 3 freqs, 2-5Hz)
- rerandomized subsets of shot, using only 600 at a time
- 6 GN iterations per frequency band
- preconditioning of Jacobian by depth weighting
- projection of water layer

One-norm curvelet regularized gradients...

+

Initial model

Model comparison

overlay with ray based tomography initial model

+

Model comparison

overlay with FWI result

+

with new released model & 2012 data set

+

Initial model

combination of TOMO initial model and new released model

+

with combined model and 2012 data set

x 10⁴

+

Initial model

Initial model

Data fitting in frequency domain

frequency slide from initial model at 3Hz

2000

2500

3000

differe

nce

Data fitting in frequency domain

frequency slide from FWI result at 3Hz

differe

nce

Data fitting in frequency domain

frequency slide from true data at 3Hz

Data fitting in time domain

offset (meter)

x 10⁴

Data fitting in time domain

offset (meter)

x 10⁴

GOM data set (released in 2013)

- 3201 shots with interval 25 m
- 1201(801) receivers with interval 25 m, yielding 30km(20km) offset
- record time 22s(14s), sample rate 4ms
- free surface
- isotropic elastic

value in brackets are from the original 2012 data set

One shot record (2012)

Receivers

One shot record

Time

Receivers

One shot record (2013)

Time

Receivers

with combined model and 2012 data set

Initial model

salt correction & smoothing

inversion without free surface

inversion with free surface

Initial model

w\o free surface

w\ free surface

Initial model

w\o free surface

w\ free surface

Observations

- Our FWI benefits from *initial model* and *curvelet denoising*
- Curvelet transform is efficient in representing model updates and "frequency slides"
- suppress model space artifacts
- "Salt flooding" is a way to help inversion get out of local minima

• Sparsity regularization in Curvelet domain of model updates can significantly

+

Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

