Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

# Wavefield reconstruction via SVD-free low-rank matrix factorization

Rajiv Kumar, Sasha Aravkin, Hassan Mansour, Ernie Esser and Felix J. Herrmann



## Motivation

- acquisition challenges
  - missing data
  - noise
- fully sampled data
  - simultaneous shot based FWI & migration
  - estimation of primaries by sparse inversion & SRME
- exploit low-rank structure of seismic data
  - randomized sampling
  - SVD-free matrix factorization



### Full waveform inversion [initial model]





### **Full waveform inversion** [fully sampled data]





### Full waveform inversion [Subsampled data]





### Full waveform inversion [low-rank interpolation]



![](_page_5_Picture_3.jpeg)

- [1] Oropeza V and M D Sacchi, 2011, Simultaneous seismic data de-noising and reconstruction via Multichannel Singular Spectrum Analysis (MSSA), Geophysics, 76 (3), V25-V32.
- [2] Nadia Kreimer, Aaron Stanton and Mauricio D. Sacchi, Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction, **Technical report, 2013**

## **Existing work**

- ► SVD computation [1,2] expensive for large scale data
- Overlap windows in space and time [2] heuristic approach
- uniform random subsampling
  - no control on the maximum gap size

![](_page_6_Picture_11.jpeg)

[Candes and Donoho 2000, Herrmann 2008]

### **Compressive sensing** [transform based]

- signal structure
  - sparse/compressible
- sampling scheme
  - random missing traces make signal less sparse in transform domain
- recovery using sparsity promoting scheme

### is sparsity the only inherent structure in seismic??

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_11.jpeg)

### [Candes and Plan 2010, Oropeza and Sacchi 2011]

## Matrix completion

### signal structure

- low rank/fast decay of singular values
- sampling scheme
  - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

![](_page_8_Figure_7.jpeg)

![](_page_8_Picture_10.jpeg)

### Low-rank structure [2-D acquisition]

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_4.jpeg)

## Matrix completion problem

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_4.jpeg)

## Low-rank interpolation

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_3.jpeg)

### Singular value decay [2-D acquisition]

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

## Matrix completion

- signal structure
  - low rank/fast decay of singular values
- sampling scheme
  - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

![](_page_13_Picture_8.jpeg)

### 2-D acquisition [randomized sampling]

### acquisition domain

missing columns do not increase rank

![](_page_14_Figure_3.jpeg)

![](_page_14_Figure_4.jpeg)

![](_page_14_Picture_6.jpeg)

### Low-rank interpolation

recovery [SNR = 2 dB]

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_5.jpeg)

### **Randomized** sampling [singular value decay]

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

### random sampled data

![](_page_16_Picture_5.jpeg)

### [Hennenfent et. al. 2008] Sampling schemes

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_3.jpeg)

## Matrix completion

- signal structure
  - low rank/fast decay of singular values
- sampling scheme
  - missing data increase rank in "transform domain"
- recovery using rank penalization scheme

![](_page_18_Picture_8.jpeg)

### **Rank minimization**

• given a set of measurements b, aim is to solve min rank(X) s.t.  $||\mathcal{A}(X) - \mathbf{b}||_2^2 \leq \sigma$  $(BPDN_{\sigma})$ Χ

where  $rank(\mathbf{X}) = number of singular values of \mathbf{X}$ 

•  $\mathcal{A}$  is the transform-sampling operator defined as  $\mathcal{A} = \mathbf{R}\mathbf{M}\mathcal{S}^H$ 

where

- $\mathbf{R}$ : restriction operator M: measurement operator  $\mathcal{S}^{H}$ : transform operator

![](_page_19_Picture_11.jpeg)

## **Rank minimization**

- prohibitively expensive
  - do not know rank value in advance
  - search over all possible values of rank
- instead solve nuclear-norm minimization
  - convex relaxation of rank-minimization [Recht et. al. 2010]

![](_page_20_Picture_9.jpeg)

![](_page_21_Picture_0.jpeg)

## **Nuclear-norm** minimization

### we want to solve $\min_{\mathbf{X}} ||\mathbf{X}||_{*} \quad \text{s.t.} \; ||\mathcal{A}(\mathbf{X}) - \mathbf{b}||_{2}^{2} \leq \sigma$ $(BPDN_{\sigma})$ where $\|\mathbf{X}\|_* = \sum_{i=1} \lambda_i = \|\lambda\|_1$

where  $\lambda_i$  are the singular values

![](_page_21_Picture_5.jpeg)

### Challenges

- requires repeated application of SVD for projections
- expensive to compute for large system - curse of dimensionality
- can we exploit rank structure "SVD free"

![](_page_22_Picture_7.jpeg)

[Rennie and Srebro 2005, Lee et. al. 2010, Recht and Re 2011]

## **Factorized formulation**

![](_page_23_Picture_2.jpeg)

### $\mathbf{X} = \mathbf{L}\mathbf{R}^{T}$ H

![](_page_23_Picture_5.jpeg)

### [Berg and Friedlander 2008, Aravkin et al. 2012b] **Factorized formulation**

• reformulate  $(BPDN_{\sigma})$  formulation

$$\min_{\mathbf{L},\mathbf{R}} ||\mathbf{L}\mathbf{R}^{H}||_{*} \quad \text{s.t.} ||\mathcal{A}|$$

• approximately solve a series of  $LASSO_{\tau}$  formulation

$$v(\tau) = \min_{\mathbf{L},\mathbf{R}} ||\mathcal{A}(\mathbf{L}\mathbf{R}^H) - \mathbf{b}|$$

where  $\mathcal{T}$  is a rank regularization parameter

### $4(\mathbf{LR}^H) - \mathbf{b}||_2^2 \leq \sigma$

### $\| \|_{2}^{2}$ s.t. $\| \mathbf{LR}^{H} \|_{*} \leq \tau$

![](_page_24_Picture_12.jpeg)

### [Rennie and Srebro 2005]

## **Factorized formulation**

- Upper-bound on nuclear norm is defined as  $\|\mathbf{L}\mathbf{R}^{H}\|_{*} \leq \frac{1}{2} \left\| \begin{bmatrix} \mathbf{L} \\ \mathbf{R} \end{bmatrix} \right\|_{F}^{2}$ 
  - where  $\|\cdot\|_F^2$  is sum of squares of all entries
- choose k explicitly & avoid costly SVD's

![](_page_25_Picture_6.jpeg)

## Interpolation flow chart

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

## **Experiments and Results**

- Case I : Uniform random subsampling
- Case 2 : Jittered subsampling
- Case 3 : Jittered + Reciprocity
- Case 4 : Simultaneous acquisition (Land)

![](_page_27_Picture_7.jpeg)

## **Experiments and Results**

- Gulf of Suez
  - 2-D seismic line
  - 50 % missing traces
  - rank adjusted from low to high frequency
  - 150 iterations

![](_page_28_Picture_7.jpeg)

## Uniform random v/s Jittered

![](_page_29_Figure_1.jpeg)

**Discrete random** 

![](_page_29_Figure_3.jpeg)

Time(s)

Jittered

![](_page_29_Picture_5.jpeg)

### Case I [uniform random subsampling]

![](_page_30_Figure_1.jpeg)

**Ground Truth** 

 $\mathcal{A} = \mathbf{RM}\mathcal{S}^H$  $\mathbf{M} = \mathbf{I}$ 

### SNR = 16.2 dB

![](_page_30_Figure_5.jpeg)

Time(s)

Recovery

![](_page_30_Picture_7.jpeg)

### Case I [uniform random subsampling]

![](_page_31_Figure_1.jpeg)

**Ground Truth** 

 $\mathcal{A} = \mathbf{RM}\mathcal{S}^H$  $\mathbf{M} = \mathbf{I}$ 

![](_page_31_Figure_4.jpeg)

### Difference

![](_page_31_Picture_6.jpeg)

### Case 2 [jittered subsampling]

![](_page_32_Figure_1.jpeg)

 $\mathcal{A} = \mathbf{R}\mathbf{M}\mathcal{S}^H$  $\mathbf{M} = \mathbf{I}$ 

### SNR = 20 dB

![](_page_32_Figure_5.jpeg)

Time(s)

Recovery

![](_page_32_Picture_7.jpeg)

### Case 2 [jittered subsampling]

![](_page_33_Figure_1.jpeg)

 $\mathcal{A} = \mathbf{RM}\mathcal{S}^H$  $\mathbf{M} = \mathbf{I}$ 

![](_page_33_Figure_4.jpeg)

### Difference

![](_page_33_Picture_6.jpeg)

### **Case 3** [jittered subsampling + reciprocity]

![](_page_34_Figure_1.jpeg)

 $egin{aligned} \mathcal{A} &= \mathbf{R}\mathbf{M} rac{(\mathbf{I}+\mathbf{T})}{\mathbf{2}} \mathcal{S}^H \ \mathbf{M} &= \mathbf{I} \end{aligned}$ 

### **SNR = 20.6 dB**

![](_page_34_Figure_6.jpeg)

Recovery

![](_page_34_Picture_8.jpeg)

### **Case 3** [jittered subsampling + reciprocity]

![](_page_35_Figure_1.jpeg)

 $egin{aligned} \mathcal{A} &= \mathbf{R}\mathbf{M} rac{(\mathbf{I}+\mathbf{T})}{2} \mathcal{S}^H \ \mathbf{M} &= \mathbf{I} \end{aligned}$ 

![](_page_35_Figure_5.jpeg)

### Difference

![](_page_35_Picture_7.jpeg)

![](_page_36_Picture_0.jpeg)

### Case 4 [Simultaneous Source : Land]

![](_page_36_Figure_2.jpeg)

**Ground Truth** 

### $\mathcal{A} = \mathbf{R}\mathbf{M}\mathcal{S}^H$ $\mathbf{M} \stackrel{\mathbf{def}}{=} [\mathbf{I} \otimes \mathbf{diag}(\eta) \mathcal{F}_{\mathbf{s}}^* \mathbf{diag}(\mathbf{e}^{\mathbf{i}\theta}) \mathcal{F}_{\mathbf{s}} \otimes \mathbf{I}]$ [Herrmann et. al. 2009]

![](_page_36_Figure_5.jpeg)

![](_page_36_Picture_6.jpeg)

![](_page_37_Picture_0.jpeg)

### **Case 4** [Simultaneous Source : Land]

![](_page_37_Figure_2.jpeg)

**Ground Truth** 

SNR = 21.2 dB

![](_page_37_Figure_5.jpeg)

Time(s)

Recovery

![](_page_37_Picture_7.jpeg)

![](_page_38_Picture_0.jpeg)

Time(s)

### Case 4 [Simultaneous Source : Land]

![](_page_38_Figure_2.jpeg)

**Ground Truth** 

### $\mathcal{A} = \mathbf{R}\mathbf{M}\mathcal{S}^H$ $\mathbf{M} \stackrel{\mathbf{def}}{=} [\mathbf{I} \otimes \mathbf{diag}(\eta) \mathcal{F}_{\mathbf{s}}^* \mathbf{diag}(\mathbf{e}^{\mathbf{i}\theta}) \mathcal{F}_{\mathbf{s}} \otimes \mathbf{I}]$ [Herrmann et. al. 2009]

![](_page_38_Figure_5.jpeg)

### Difference

![](_page_38_Picture_7.jpeg)

### Comparison [uniform random vs jittered vs jittered + reciprocity]

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_3.jpeg)

### Conclusion

- jittered sampling gives advantage of controlling the gap size
- large data
- representation

![](_page_40_Picture_4.jpeg)

matrix factorization allows SVD-free low-rank methods that work fast on

Iow-rank structure holds promise for data recovery and more compact

![](_page_40_Picture_7.jpeg)

### **Future Work**

Incorporate jittered sampling in 3D

► High frequency are *not low-rank* in nature, explore HSS (Hierarchical semi-separable representation) in 5D

weighted low-rank interpolation

![](_page_41_Picture_4.jpeg)

![](_page_41_Picture_6.jpeg)

# Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

![](_page_42_Picture_1.jpeg)

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

![](_page_42_Picture_3.jpeg)