Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Extended images in action (efficient WEMVA via randomized probing)

Rajiv Kumar, Tristan van Leeuwen and Felix J. Herrmann

Motivation

- initial model for FWI
- computation of *full*-subsurface offset volumes is computationally prohibitively expensive (storage & computation time)

• can't form full *E* but *action* on (random) vectors allows us to get information from all or subsets of subsurface points

as

where

- - Q:source
 - D:data matrix
- - m: slowness

• Given two-way wave equations, source and receiver wavefields are defined $H(\mathbf{m})U = P_s^T Q$ $H(\mathbf{m})^*V = P_r^T D$

 $H(\mathbf{m})$: discretization of the Helmoltz operator

 P_s, P_r : samples the wavefield at the source and receiver positions

- Organize wavefields in monochromatic data *matrices* where each column represents a common shot gather
- Express image volume tensor for single frequency as a matrix

 $E = UV^*$

- Too expensive to compute (storage and computational time)
- Instead, probe volume with tall matr

$$\widetilde{E} = EW = H^{-1}P_s^T Q D^* P_r H^{-1} W$$

where $\mathbf{w}_i = [0, \dots, 0, 1, 0, \dots, 0]$ represents single scattering points

$$\mathbf{vix} W = [\mathbf{w}_1, \dots, \mathbf{w}_l]$$

VAN LEEUWEN 2012

example for one layer

	1	
	1	
	- -	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1.1	

Computational costs

Full subsurface offset extended images:

	# of PDE solves	"flops for correlations"
conventional	2Ns	$N_s \times N_h$
mat-vecs	2N _×	$N_s \times N_r$

 N_s - # of sources N_r - # of receivers N_h - # of subsurface offsets N_x - # of sample points •

Biondo & Symes, '04, Symes 2008, Sava & Vasconcelos, '11

 \star stand for element-wise multiplication

.*

Focusing [propose method] VAN LEEUWEN 2012

 \star matrix-matrix multiplication

$E \operatorname{diag}(\mathbf{x}) \approx \operatorname{diag}(\mathbf{x}) E$

Focusing

where \mathbf{x} represents horizontal, vertical or all offset.

Fast WEMVA w/ randomized probing

• Measure the error in some norm VAN LEEUWEN 2012 $\min ||E(\mathbf{m})\mathsf{diag}(\mathbf{x}) - \mathsf{diag}(\mathbf{x})E(\mathbf{m})||_{?}^{2}$

m

• The Frobenius norm can be estimated via randomized trace estimation : Avron and Toledo, 2011

 $||A||_{F}^{2} =$

$$= \operatorname{trace}(A^{T}A)$$

$$\approx \sum_{i=1}^{K} \mathbf{w}_{i}^{T} A^{T}A \mathbf{w}_{i} = \sum_{i=1}^{K} ||A \mathbf{w}_{i}||_{2}^{2}$$

Randomized probing [reflection]

true model

Randomized probing [reflection]

• Exact

• different color represents different random realization

Applications

- Reflector model
- Lens model
- Vertical gradient model
- Marmousi model

Reflector model

Vertical Trace

Reflector model [image gathers]

initial model

true model

Lens Model

Vertical Trace

Lens Model [image gathers]

true model

SHEN 2013

Vertical gradient [diving waves]

true model

initial model

WEMVA

Vertical gradient [image gathers]

true model

initial model

WEMVA

Marmousi Model [preliminary results]

WEMVA

Conclusions

- probings allows us to get offset information for all direction
- randomized trace estimation allows us to compute WEMVA objective cheaply

Future Work

• control sloppiness in WEMVA (frugal method)

• incorporate the free-surface multiple in WEMVA

least-squares extended images with free-surface multiples

Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

